
CSCI 2321 (Principles of Computer Design), Spring 2015

Homework 5

Credit: 20 points.

1 Reading

Be sure you have read all assigned sections of Chapter 2 and Appendix A.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 2321 homework 5”). You can develop your programs on any
system that provides the needed functionality, but I will test them using the SPIM simulator on
one of the department’s Linux machines, so you should probably make sure they work in that envi-
ronment before turning them in. (Specifically, I will test from the command line with a command
of the form spim -f yourcode.s.)

1. (10 points) Write a complete MIPS assembler program for the SPIM simulator that prompts
for a sequence of integers ending with 0 and prints their sum. It should behave like this C
program:

#include <stdio.h>

int main(void) {

printf("Enter integers to sum (0 to stop)\n");

int input = 0;

int sum = 0;

do {

printf("Enter integer: ");

/* no error checking since it’s not feasible for the MIPS program */

scanf("%d", &input);

sum += input;

} while (input != 0);

printf("Sum = %d\n", sum);

return 0;

}

Notice in particular that no error checking is required. You are allowed — encouraged, really
— to use the procedures in subs.s on the “sample programs” page to do the needed I/O.

2. (10 points) Here is a partial MIPS assembler program for the SPIM simulator that prompts
for two integers and then computes and prints their greatest common divisor (GCD): gcd.s1.

1http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2015spring/Homeworks/HW05/Problems/gcd.s

1

CSCI 2321 Homework 5 Spring 2015

Your mission is to complete it so that it actually does the computation, without making any

changes other than to add a gcd procedure. You will likely lose points if you make other
changes.

ADDITION: You will also lose points if you do not follow MIPS conventions for procedures —
obtaining parameter values from $a0 and $a1, returning a value in $v0, and saving/restoring
any of the $sN registers you use.

Your program only needs to work if the inputs are both positive integers; you do not need to
add anything to make sure this is true. A simple recursive algorithm for computing the GCD
of two integers can be expressed in pseudocode thus:

gcd(a, b) {

if (b == 0) return a;

else return gcd(b, a%b);

}

Your program will only get full credit if you use this algorithm. Solutions using loops are
possible but not in my opinion any simpler, and implementing using recursion is a better test
of your understanding of the use of procedures. (If you wonder how to compute a remainder
in MIPS assembler: The div instruction computes both quotient and remainder and puts
them in special-purpose registers which you can access with the mflo (for the quotient) and
mfhi (for the remainder) instructions.)

2

