CSCI 2321 (Principles of Computer Design), Spring 2015

Homework X

Credit: Up to 50 extra-credit points.

1 Overview

The problems below are a mix of the well-defined and the open-ended. You can receive at most
50 extra-credit points, but credit for the more open-ended problems is similarly open-ended and
depends on the level of effort or difficulty. As with previous assignments, anything you send me
by e-mail should have something in the Subject line that mentions the course (“csci 23217 or
“computer design”, e.g.) and the assignment (“extra credit”).

NOTE that the usual rules for collaboration do not apply to this assignment. Please do not
work with others, even to the extent (general discussion) allowed for regular homeworks.

2 Problems

Do as many of the following as you like. You can turn in hardcopy (put it in one of my mailboxes)
or send me by e-mail me something I can print (PDF preferred, but anything I can reasonably print
from Linux is okay).

1. (Up to 5 points)
Do the extra-credit problem from Homework 3:

Do problems 3.12 and 3.18 from the textbook. Problem 3.18 is in my opinion somewhat
ambiguously stated, but I think the two inputs (74 and 21) are meant to be interpreted as
base-8 numbers.

(Does it go without saying that you can’t get credit for these problems both as part of
Homework 3 and as part of this assignment? It should!)

2. (Up to 5 points)

(In the style of the textbook: This problem explores changes to the single-cycle implementa-
tion needed to support the jr and jal instructions.)

Section 4.4 of the textbook discusses how information flows through the datapath of Fig-
ure 4.17 for three instructions (R-format, 1w, and beq — this is the discussion illustrated by
Figures 4.19 through 4.24)). There is also a discussion of what must be added to support the
j instruction, culminating in Figure 4.24.

For each of the specified instructions (jr and jal), first describe (as a numbered list of steps)
what execution of the instruction needs to involve, and then discuss what changes (if any)
you would need to make to the design shown in Figure 4.24 to make it work. (If you need to
make changes to the figure, it might be clearest to print/photocopy the figure and mark it

up.)



CSCI 2321 Homework X Spring 2015

3. (Up to 5 points)

(In the style of the textbook: This problem explores changes to the single-cycle implementa-
tion needed to support exceptions.)

Section 4.9 of the textbook discusses changes to the pipelined implementation needed to
support exceptions. Describe how you could adapt this approach to the single-cycle imple-
mentation — that is, describe what changes you would need to make to the design shown in
Figure 4.24. (If you need to make changes to the figure, it might be clearest to print/photocopy
the figure and mark it up.)

4. (No maximum, though as a rough guideline a page or so of prose will likely get you about 5
points.)

In this course we focused on the MIPS architecture and its assembly language because it’s
simple and regular, and in theory once you have this background you should be well-prepared
to learn about other architectures and their assembly languages. Choose some other archi-
tecture (x86 comes to mind, but there are others) and write a one-page-or-so executive-level
summary of how it compares to the MIPS architecture (e.g., does it also have a notion of
general-purpose registers, what if any special-purposes registers does it have, how do (some
of) the instructions compare to those used in MIPS, etc.). Include a list of the sources you
consulted (parts of the textbook, Web sites, etc.) You can even do this more than once for
several different architectures.

5. (No maximum, though as a rough guideline a page or so of prose will likely get you about 5
points.)

For testing MIPS assembler programs we used a simple emulator (SPIM). Based on a very
quick Google search it appears that there are other tools that provide similar or greater
functionality (cross-compilers that generate MIPS assembler or object code from C code.
full-fledged virtual machines that implement the MIPS architecture.) Find one or more that
seem to you likely to be useful for this course and explain why you think it would be useful
and what would be involved in installing it.

3 Programming Problems

Do as many of the following as you like; submit your program(s) by e-mail, with each source-code
file as an attachment.

1. Write a complete MIPS program to do something you think is (at least a bit) interesting and
doable. Your program should consist of a single .s file, e.g., mypgm.s, and should be runnable
using SPIM with the command spim -f mypgm.s. How much credit you get depends on the
difficulty of the problem. Some ideas:

e (Up to 5 points.)
(Inspired by problem 2.37 in the textbook.) Convert a text string meant to represent
a hexadecimal value to a (32-bit) integer. For this program, write a MIPS procedure
(using the standard conventions for called procedures described in the text) that takes
one argument, the address of a text string meant to represent a non-negative hexadecimal
value, converts it a 32-bit integer value, and returns the result, or -1 if the text string
does not contain something that can be converted as desired. (For example, for the
string “10” the procedure should return 16, and for “1E” it should return 30; for “hello”



CSCI 2321 Homework X Spring 2015

or “-2” it should return -1.) Then add a main program that prompts the user for a line
of text, calls your procedure to convert it to an integer, and prints the result.
e (Up to 5 points.)

Display a 32-bit value in hexadecimal notation. For this program, write a MIPS proce-
dure (using the standard conventions for called procedures described in the text) that
takes one argument, a 32-bit value, and displays it in hexadecimal form on the simulated
standard output. (For example, 2 should print as 00000002, and -2 should print as FFFF
FFFE.) Then add a main program that prompts the user for an integer and calls your
procedure to print it in hexadecimal.

2. Some of the homeworks and exams had you do things that (should?) seem very automatable.

e Converting a number in decimal form to a text form of its IEEE-754 representation, or
vice versa.

e Converting a line or lines of MIPS assembler to a text form of its binary representation,
or vice versa. (This might take a while if you want to support all instructions, but you
could choose to accept a subset, though obviously(?) the more you do the more credit
you can get.)

Write a program in a high-level language to perform one of these tasks (or some other task
you had to do as part of a homework assignment or quiz and that you think is similarly
automatable). You can use any high-level language I can easily test from the command line
on one of our classroom/lab Linux systems. (For many of you Scala might be a good choice,
though C++ might appeal to some, or even straight C.) Number of points here depends on
length and difficulty of the program; as rough guideline, something comparable to one of the
MIPS programs described above would likely get you about 5 points.



