
CSCI 2321 February 5, 2015

Slide 1

Administrivia

• Reminder: Homework 1 due today (but accepted without penalty through

tomorrow). Hardcopy please. Usually I say 5pm for written work but really

anytime before 11:59pm is okay if you put it in the mailbox outside my office.

• For minute essays with “right” answers there will be a sample solution in the

final version of the online notes.

• Sample solutions for quizzes will be linked from the “lecture topics and

assignments” page after (both sections of) class.

Slide 2

Minute Essay From Last Lecture

• Many people came up with something pretty much right, but by no means all.

• (Review answers?)

CSCI 2321 February 5, 2015

Slide 3

MIPS Instructions — Recap/Review

• MIPS instructions include some for arithmetic (which operate on registers and

small constants) and some for transfer between memory and registers.

• Registers include some special-purpose ones (e.g., program counter) and 32

general-purpose ones. Each holds a 32-bit value. Can reference the latter by

number (0 through 31) or using symbolic names (shown in “MIPS reference”

in textbook).

Slide 4

SPIM Simulator

• Simulator (command spim or xspim) emulates a real MIPS processor and

can be used to assemble (on the fly) and execute assembly-language

programs.

• At startup it contains in memory what amounts to a very primitive operating

system, including code to do some simple setup and call a main procedure

and code for some “system calls” for very simple console I/O.

• main procedures include some boilerplate “linkage” at start and end, as in

starter.s on sample programs page on course Web site. No I/O yet but

you can watch values in registers change.

• (Continue demo from last time.)

CSCI 2321 February 5, 2015

Slide 5

Representing Instructions in Binary

• “It’s all ones and zeros” applies not only to data but also to programs —

“stored program” idea. (Some very early computers didn’t work that way —

programming was by rewiring(!).)

• So we need a way to represent instructions in binary . . .

Slide 6

Representing Instructions in Binary, Continued

• First consider what we have to represent:

– For all instructions, which instruction it is.

– For add and sub, three operands (all register numbers).

– For lw and sw, three operands (two register numbers and a

“displacement”).

– And so forth . . .

• So, each instruction will have “fields” — consistent format for storing pieces of

data, a little like a C struct.

CSCI 2321 February 5, 2015

Slide 7

Representing Instructions in Binary, Continued

• So, can we use the same format for all instructions? Some data (“which

instruction”) is common to all, but operands may need to be different.

• Can we / should we make all instructions the same length? For MIPS, yes

(other architectures differ), and then define different ways of dividing up the

length — “formats”.

Basic principle: “Good design involves good compromises.”

Slide 8

R Format

• Meant for instructions such as add.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for add), 5 bits

– funct — “function field”, 6 bits

• Example — find binary representation of

add $t0, $s1, $s2

CSCI 2321 February 5, 2015

Slide 9

I Format

• Meant for instructions such as lw.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

• Example — find binary representation of

lw $t0, 1200($t1)

• How can we tell which format is being used? determined by value for op.

Slide 10

Logical Operations

• Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

• Thus, MIPS instruction set provides “logical operations”. Hard to say whether

these exist to support C bit-manipulation operations, or C bit-manipulation

operations exist because most ISAs provide such instructions!

CSCI 2321 February 5, 2015

Slide 11

“Shift” Instructions

• C << and >> (on unsigned numbers) are translated into sll (“shift left

logical”) and srl (“shift right logical”).

• sll and srl do what the names imply — bits “fall off” one side, and we add

zeros at the other side. These are R-format instructions, and they use that

“shift amount” field.

• When shifting left, filling with zeros makes sense. But when shifting right, we

might want to extend the sign bit instead. sra (“shift right arithmetic”) does

that.

• Examples?

Slide 12

Bitwise And and Or

• C & is translated into and or andi. C | is translated into or or ori.

Format/operands are analogous to add and addi.

(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

• We could use these to test/set particular bits. Examples? Could we use them

to, e.g., compute remainder when dividing by power of 2?

CSCI 2321 February 5, 2015

Slide 13

Other Logical Operations

• “Exclusive or” implements — what the name suggests (see textbook).

• “Nor” likewise. Can be used to implement “not” (see textbook).

Slide 14

Flow of Control

• So far we know how to do (some) arithmetic, move data into and out of

memory. What about if/then/else, loops? (See sidebar on p. 90 for early

commentary on conditional execution.)

• We need instructions that allow us to “make a decision” — beq (“branch if

equal”), bne (“branch if not equal”).

• Illustrate with an example . . .

CSCI 2321 February 5, 2015

Slide 15

Flow of Control Example

• Suppose we have this in C

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

• What instructions should compiler produce? Assume we’re using $s0

through $s4 for for f, g, h, i, j.

• (For now, punt on how to represent L1.)

Slide 16

Another Flow of Control Example

• Of course, we don’t usually have go to in C. More likely is this:

if (i == j)

f = g + h

else

f = g - h

• What to do with this? Rewrite using go to . . .

CSCI 2321 February 5, 2015

Slide 17

Loops

• Do we have enough to do (some kinds of) loops? Yes — example:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

• Or how about something that looks more like normal C?

while (A[i] == k) {

i = i + j;

Slide 18

More Flow of Control (Preview)

• We can do if/then/else and loops, but only if condition being tested is equals /

not equals.

• So, we need instructions that will allow less-than comparisons.

• (We also need something that allows an unconditional branch, but we may

punt on that for a while too.)

CSCI 2321 February 5, 2015

Slide 19

Minute Essay

• None —- quiz.

• Quiz is “open book, open notes”, which means you can look at:

– Textbook (paper or electronic).

– Course Web site (my “notes”. sample programs).

– Your notes (paper or electronic).

but nothing else.

