
CSCI 2321 February 24, 2015

Slide 1

Administrivia

• Reminder: Quiz 2 Thursday. Topics from chapter 2, the sections we’ve

covered in class.

• Appendix A has some additional information about MIPS assembler

language. in particular a section with short descriptions of all instructions and

table that maps opcode to instruction name.

Also includes a kind-of-discussion of why offsets in branch instructions are

not what I think they should be.

Slide 2

Machine Language, Revisited

• We worked through at least one example of getting machine language

(binary) from assembly language, using “reference card” in front of (paper

version of) textbook.

• Additional examples might be useful? using different “instruction formats”?



CSCI 2321 February 24, 2015

Slide 3

R Format (Review)

• Meant for instructions such as add, sll.

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for all instructions), 5 bits

– funct — “function field”, 6 bits (not used for all instructions), 6 bits

• (Examples.)

Slide 4

I Format (Review)

• Meant for instructions that involve a 16-bit constant (e.g., addi, lw, beq).

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– imm, offset — constant/offset, 16 bits

• (Examples.)



CSCI 2321 February 24, 2015

Slide 5

J Format

• Meant for instructions that involve an “absolute” address (e.g., j).

• Fields:

– op — op code, 6 bits

– target — address/4, 26 bits

• (Example.)

Slide 6

Decoding Machine Language

• As a check on whether what we have is sensible — try going from machine

language back to assembly language, using same examples?

• (How to know which format? depends on opcode, always first 6 bits.)



CSCI 2321 February 24, 2015

Slide 7

From Source Code to Execution, Revisited

• Conceptually, four steps: compile, assemble, link, load.

• Real systems may merge/modify steps (e.g., might combine compile and

assemble steps).

Slide 8

Compiling

• Compiler translates high-level language source code into assembly language.

A single line of HLL code could generate many lines of assembly language.

• Just generating assembly language equivalent to HLL is not trivial. Result,

however, can be much less efficient than what a good assembly-language

programmer can produce. (When HLLs were first introduced, this was an

argument against their use.)

• So compilers typically try to optimize — keep values in registers rather than in

memory, e.g. Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

• Some compilers will show you the assembly-language result (e.g., gcc with

the -S flag).



CSCI 2321 February 24, 2015

Slide 9

Assembling

• Assembler’s job is (mostly!) to translate assembly language into ones and

zeros (machine language). Goal is for this process to be simple and

mechanical, unlike compiling (usually?).

• As part of this, assemblers typically allow programmer to use symbolic labels

to refer to addresses (targets of jumps and conditional branches, variables).

To make this work, assembler must keep “symbol table” mapping names to

addresses.

• Assemblers also sometimes support “pseudoinstructions” — shorthand for

commonly-occurring uses/combinations of real instructions, readily translated

to real instructions. (Examples in MIPS include li, la.)

• (Some assemblers also support defining and using macros, similar to C

preprocessor.)

Slide 10

Linking

• For small programs assembling the whole program works well enough. But if

the program is large, or if it uses library functions, seems wasteful to

recompile sections that haven’t changed, or to compile library functions every

time (not to mention that that requires having their source code).

• So we need a way to compile parts of programs separately and then

somehow put the pieces back together — i.e., a “linker” (a.k.a. “linkage

editor”).

• To do this, have to define a mechanism whereby programs/procedures can

reference addresses outside themselves and can use absolute addresses

even though those might change.



CSCI 2321 February 24, 2015

Slide 11

Linking, Continued

• How? define format for “object code” — machine language, plus additional

information about size of code, size of statically-allocated variables, symbols,

and instructions that need to be “patched” to correct addresses. Format is

part of complete “ABI” (Application Binary Interface), specific to combination

of architecture and operating system.

• Linker’s job is then to combine pieces of object code, merging code and

static-variable sections, resolving references, and patching addresses. Result

should be something operating system can load into memory and execute —

“executable file”.

Slide 12

Sidebar: Dynamic Linking

• In earlier times linkers behaved as just described, linking in all needed library

code. But this may not be efficient: May result in pulling in code for unused

procedures. Also, if the system supports concurrent execution of multiple

threads/applications/etc., might be nice to allow them to share a single copy

in memory of library code.

• “Dynamic linking” supports this, and has the side benefit(?) of allowing

updates to library code without relinking all applications that use it. (Is this

always a benefit?)

• Implementations have different names — “DLL” in Windows, “shared library”

in UNIX. How it works is similar — at link time, link in “stub” routine that at

runtime locates the desired code, loads it into memory (if necessary!) and

patches references.



CSCI 2321 February 24, 2015

Slide 13

Loaders

• So what’s left . . .

• “Executable file” contains all machine language for program, except for any

dynamically-linked library procedures. What does the operating system have

to do to run the program? Well . . .

• Obviously it needs to copy the static parts (code, variables) into memory.

(How big are they?) Also it needs to set up to transfer control to the main

program, including passing any parameters. And it may need to perform

dynamic linking. Finally, what about those absolute addresses?

• So as with object code, executable files contain more than just machine

language. File format, like that of object code, is part of ABI.

• Textbook has an example of linking. To be reviewed next time . . .

Slide 14

This and That

• Textbook presents extended example (sort). Skim as an example of using

MIPS instructions.

• Textbook goes into some detail about compiling C code to loop through an

array, showing a version that uses indices and one that uses pointers. Skim it

as another example, but the take-home message is that whether C

programmers need to consider such things — probably not with a sufficiently

“good” (optimizing) compiler.



CSCI 2321 February 24, 2015

Slide 15

Minute Essay

• One advantage of dynamic linking is that it allows for replacing/updating

library procedures (with no need to recompile/relink applications that use

them). Is there a disadvantage to this?

Slide 16

Minute Essay Answer

• Yes — if the replacement library code has new bugs, applications that worked

may fail. Also, applications that rely on undocumented behavior may stop

working.


