Administrivia

- (This set of "slides" includes many not used in class. Meant as highlights of material we don't really have time for.)

Slide 1

Numbers and Arithmetic - Review/Recap

- Most architectures these days represent integers as fixed-length two's complement binary quantities.
- Most architectures these days represent real numbers using one or more of the formats laid out by the IEEE 754 standard. Based on a base-2 version of

Slide 2 scientific notation, plus special values for zero, plus/minus "infinity", and "not a number" (NaN).
(Worth noting, though, that historically there have been architectures that could represent fractional quantities using base-10 "fixed-point" notation, and this may be coming back.)

Implementing Arithmetic - Preview

- In the next chapter we start talking about hardware design (though still at a somewhat abstract level).
- For now it may be useful to know that the low-level building blocks are entities that can evaluate Boolean expressions - very simple ones at the lowest

Slide 3

 level, and slightly more complex ones one level up.- So for example we can implement addition by first making a "one-bit adder" that maps three inputs (two operands and carry-in) to two outputs (result and carry-out), and then chaining together 32 of them. This is (almost) enough to do addition and subtraction - just need to figure out about overflow.
- Multiplication and division, however, may need to be more complex, involving multiple steps and control-flow logic.

Multiplication

- As with addition, first think through how we do this "by hand" in base 10. (Review terminology: In $a \times b$, call a the "multiplicand" and b the "multiplier".) Example?
- We can do the same thing in base 2, but it's simpler, no? computing the Slide $4 \quad$ partial results is easier. This gives the textbook's first algorithm, figure 3.5. (Work through example if time permits.)
Notice also that overflow could be a lot worse here - so normally we'll compute a result twice as big as the inputs.
(We can do better - later.)
- What about signs? Algorithm works, if we extend the sign bit when we shift right.

Multiplication, Continued

- In MIPS architecture, 64-bit product / work area is kept two special-purpose registers (lo and hi). Two instructions needed to do a multiplication and get the result:
mult rs1, rs2
mflo rdest
Assembler provides a "pseudoinstruction":
mul rdest, rs1, rs2
- Notice, however, that a "smart" compiler might turn some multiplications into shifts. (Which ones?)

Division

- As with other arithmetic, first think through how we do this "by hand" in base 10. (Review terminology: We divide "dividend" a by "divisor" b to produce quotient q and remainder r, where $a=b q+r$ and $0 \leq|r|<b$.) Example?

Slide 6
We can do the same thing in base 2; this gives the algorithm in figure 3.10.
(Work through example if time permits.)
(Here too we can do better - later).

- What about signs? Simplest solution is (they say!) to perform division on non-negative numbers and then fix up signs of the result if need be.

Division, Continued

- In MIPS architecture, 64-bit work area for quotient and remainder is kept in same two special-purpose registers used for multiplication (lo and hi). After division, quotient is in lo and remainder is in hi. Two (or more) instructions needed to do a division and get the result:

Slide 7

div rs1, rs2
mflo rq
mfhi rr
Assembler provides a "pseudoinstruction":
div rdest, rs1, rs2

- Notice, however, that a "smart" compiler might turn some divisions into shifts. (Which ones?)

Floating Point in MIPS Architecture

- Architecture defines 32 floating-point registers (\$ f0 through $\$$ f 31), used singly for single-precision, in pairs for double-precision.
- Instruction set includes:
- Arithmetic instructions:

Slide 8 add.s, sub.s,mul.s,div.s;add.d, sub.d, mul.d, div.d

- Load/store instructions (single-precision):
lwc1; swc1
- Comparisons:
c.eq.s, c.lt.s, etc.; c.eq.d, c.lt.d, etc.

These set a bit true/false, which can be used by bc1t, bc1f.

Minute Essay

- The following C code

```
float f1 = 0.0;
for (int i = 0; i < 10; ++i) {
            f1 += 0.1;
}
float f2 = 1.0;
printf("f1 = %f, f2 = %f, f1=f2? %c\n",
                f1, f2, (f1==f2) ? 'y' : 'n');
```

prints
$\mathrm{f} 1=1.000000, \mathrm{f} 2=1.000000, \mathrm{f} 1=\mathrm{f} 2 ? \mathrm{n}$
which seems somewhat surprising, no? Why doesn't it think the two floating-point quantities are equal?

Minute Essay Answer

- The quantity 0.1 can't be represented exactly in binary floating-point, so it shouldn't be a complete surprise that the two quantities aren't exactly equal, though apparently the rounded values used in printing are equal.

