
CSCI 2321 March 19, 2015

Slide 1

Administrivia

• (This set of “slides” includes many not used in class. Meant as highlights of

material we don’t really have time for.)

Slide 2

Numbers and Arithmetic — Review/Recap

• Most architectures these days represent integers as fixed-length two’s

complement binary quantities.

• Most architectures these days represent real numbers using one or more of

the formats laid out by the IEEE 754 standard. Based on a base-2 version of

scientific notation, plus special values for zero, plus/minus “infinity”, and “not a

number” (NaN).

(Worth noting, though, that historically there have been architectures that

could represent fractional quantities using base-10 “fixed-point” notation, and

this may be coming back.)

CSCI 2321 March 19, 2015

Slide 3

Implementing Arithmetic — Preview

• In the next chapter we start talking about hardware design (though still at a

somewhat abstract level).

• For now it may be useful to know that the low-level building blocks are entities

that can evaluate Boolean expressions — very simple ones at the lowest

level, and slightly more complex ones one level up.

• So for example we can implement addition by first making a “one-bit adder”

that maps three inputs (two operands and carry-in) to two outputs (result and

carry-out), and then chaining together 32 of them. This is (almost) enough to

do addition and subtraction — just need to figure out about overflow.

• Multiplication and division, however, may need to be more complex, involving

multiple steps and control-flow logic.

Slide 4

Multiplication

• As with addition, first think through how we do this “by hand” in base 10.

(Review terminology: In a × b, call a the “multiplicand” and b the “multiplier”.)

Example?

• We can do the same thing in base 2, but it’s simpler, no? computing the

partial results is easier. This gives the textbook’s first algorithm, figure 3.5.

(Work through example if time permits.)

Notice also that overflow could be a lot worse here — so normally we’ll

compute a result twice as big as the inputs.

(We can do better — later.)

• What about signs? Algorithm works, if we extend the sign bit when we shift

right.

CSCI 2321 March 19, 2015

Slide 5

Multiplication, Continued

• In MIPS architecture, 64-bit product / work area is kept two special-purpose

registers (lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rs1, rs2

mflo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some multiplications into

shifts. (Which ones?)

Slide 6

Division

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Review terminology: We divide “dividend” a by “divisor” b to

produce quotient q and remainder r, where a = bq + r and 0 ≤ |r| < b.)

Example?

We can do the same thing in base 2; this gives the algorithm in figure 3.10.

(Work through example if time permits.)

(Here too we can do better — later).

• What about signs? Simplest solution is (they say!) to perform division on

non-negative numbers and then fix up signs of the result if need be.

CSCI 2321 March 19, 2015

Slide 7

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder is kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient is in lo and remainder is in hi. Two (or more)

instructions needed to do a division and get the result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

Slide 8

Floating Point in MIPS Architecture

• Architecture defines 32 floating-point registers ($f0 through $f31), used

singly for single-precision, in pairs for double-precision.

• Instruction set includes:

– Arithmetic instructions:

add.s, sub.s, mul.s, div.s; add.d, sub.d, mul.d, div.d

– Load/store instructions (single-precision):

lwc1; swc1

– Comparisons:

c.eq.s, c.lt.s, etc.; c.eq.d, c.lt.d, etc.

These set a bit true/false, which can be used by bc1t, bc1f.

CSCI 2321 March 19, 2015

Slide 9

Minute Essay

• The following C code

float f1 = 0.0;

for (int i = 0; i < 10; ++i) {

f1 += 0.1;

}

float f2 = 1.0;

printf("f1 = %f, f2 = %f, f1=f2? %c\n",

f1, f2, (f1==f2) ? ’y’ : ’n’);

prints

f1 = 1.000000, f2 = 1.000000, f1=f2? n

which seems somewhat surprising, no? Why doesn’t it think the two

floating-point quantities are equal?

Slide 10

Minute Essay Answer

• The quantity 0.1 can’t be represented exactly in binary floating-point, so it

shouldn’t be a complete surprise that the two quantities aren’t exactly equal,

though apparently the rounded values used in printing are equal.

