CSCT 2321

Slide 1

Slide 2

March 19, 2015

Administrivia

e (This set of “slides” includes many not used in class. Meant as highlights of

material we don'’t really have time for.)

-

Numbers and Arithmetic — Review/Recap

e Most architectures these days represent integers as fixed-length two’s

complement binary quantities.

e Most architectures these days represent real numbers using one or more of
the formats laid out by the IEEE 754 standard. Based on a base-2 version of
scientific notation, plus special values for zero, plus/minus “infinity”, and “not a
number” (NaN).

(Worth noting, though, that historically there have been architectures that
could represent fractional quantities using base-10 “fixed-point” notation, and

this may be coming back.)

CSCT 2321 March 19, 2015

Implementing Arithmetic — Preview

e In the next chapter we start talking about hardware design (though still at a

somewhat abstract level).

e For now it may be useful to know that the low-level building blocks are entities
that can evaluate Boolean expressions — very simple ones at the lowest
Slide 3 level, and slightly more complex ones one level up.

e So for example we can implement addition by first making a “one-bit adder”
that maps three inputs (two operands and carry-in) to two outputs (result and
carry-out), and then chaining together 32 of them. This is (almost) enough to

do addition and subtraction — just need to figure out about overflow.

e Multiplication and division, however, may need to be more complex, involving
multiple steps and control-flow logic.

Multiplication

e As with addition, first think through how we do this “by hand” in base 10.
(Review terminology: In a X b, call a the “multiplicand” and b the “multiplier”.)

Example?

e \We can do the same thing in base 2, but it's simpler, no? computing the
Slide 4 partial results is easier. This gives the textbook’s first algorithm, figure 3.5.
(Work through example if time permits.)

Notice also that overflow could be a lot worse here — so normally we’ll

compute a result twice as big as the inputs.

(We can do better — later.)

e What about signs? Algorithm works, if we extend the sign bit when we shift
right.

CSCT 2321 March 19, 2015

Multiplication, Continued

e In MIPS architecture, 64-bit product / work area is kept two special-purpose
registers (I 0 and hi). Two instructions needed to do a multiplication and get
the result:

mult rsl, rs2

. nflo rdest
Slide 5
Assembler provides a “pseudoinstruction”:
mul rdest, rsl, rs2
o Notice, however, that a “smart” compiler might turn some multiplications into
shifts. (Which ones?)
Division
e As with other arithmetic, first think through how we do this “by hand” in
base 10. (Review terminology: We divide “dividend” a by “divisor” b to
produce quotient ¢ and remainder 7, where a = bgq + 7 and 0 < |7"\ <b)
Example?
Siide 6 We can do the same thing in base 2; this gives the algorithm in figure 3.10.
i

(Work through example if time permits.)

(Here too we can do better — later).

e What about signs? Simplest solution is (they say!) to perform division on
non-negative numbers and then fix up signs of the result if need be.

CSCT 2321 March 19, 2015

Division, Continued

e In MIPS architecture, 64-bit work area for quotient and remainder is kept in
same two special-purpose registers used for multiplication (I 0 and hi).
After division, quotient is in | 0 and remainder is in hi . Two (or more)
instructions needed to do a division and get the result:

) div rsl, rs2
Slide 7

nflo rq
nfhi rr
Assembler provides a “pseudoinstruction”:
div rdest, rsl, rs2

e Notice, however, that a “smart” compiler might turn some divisions into shifts.
(Which ones?)

Floating Point in MIPS Architecture

e Architecture defines 32 floating-point registers ($f O through $f 31), used
singly for single-precision, in pairs for double-precision.

e [nstruction set includes:
— Arithmetic instructions:

Slide 8 add. s,sub.s,nmul . s,div. s;add. d,sub. d,mul . d,div.d

— Load/store instructions (single-precision):
lwel;swel

— Comparisons:
c.eq.s,c.lt.s,etc;c.eq.d,c.lt.d,etc
These set a bit true/false, which can be used by bc 1t , bc1f .

CSCT 2321

March 19, 2015

Slide 9

Slide 10

e The following C code

float f1 = 0.0;
for (int i =0; i < 10; ++i) {
f1 += 0.1;
}
float f2 = 1.0;
printf("fl1 =09, f2 = 9%, fi1=f2? %\n",
fi1, f2, (f1==f2) 2 'y’ : 'n");

prints
f1 = 1.000000, f2 = 1.000000, f1=f2? n

which seems somewhat surprising, no? Why doesn't it think the two

floating-point quantities are equal?

e The quantity 0.1 can’t be represented exactly in binary floating-point, so it

shouldn’t be a complete surprise that the two quantities aren’t exactly equal,

though apparently the rounded values used in printing are equal.

