
CSCI 2321 April 9, 2015

Slide 1

Administrivia

• Reminder: Homework 3 due Tuesday.

• Next quiz a week from today. Topics from whatever parts of chapter 4 we’ve

covered by then. Next homework like to be assigned Tuesday.

Slide 2

Minute Essay From Last Lecture

• Almost no one got this right! see “answer” slide from previous lecture.

• Something to be considered is that “real” systems seem not to make this

distinction, so there must be some way to design a processor with a single

memory to contain both instructions and data!

• Key point is that if we want to do everything in a single cycle — that includes

both getting the instruction and potentially getting some data from memory.



CSCI 2321 April 9, 2015

Slide 3

Datapath and Instruction Formats

• Last time we looked at the ways bits can flow through the datapath, but not in

a lot of detail.

• As part of this, need to route various fields of instruction to register file inputs

(up to three register numbers) and an ALU (16-bit “immediate” value). Also

need to route opcode to the control-logic block. Might get complicated if these

fields weren’t always in the same place — but mostly they are, and when

they’re not, there aren’t very many choices.

Slide 4

Control Logic — Review/Recap

• First step was to sketch a “datapath” — combinational logic blocks to perform

needed computation, state elements to save values. Notice that sometimes

we need what seem to be redundant logic blocks (e.g., multiple things that

can add) — in part because for right now we’re trying to do everything in a

single cycle, so potentially we need to do several additions concurrently.

• Several parts of the datapath need additional information — “control signals”

— that depends on what instruction is being executed. “Control logic”

transforms (parts of) instruction into control signals.



CSCI 2321 April 9, 2015

Slide 5

Control Logic — A Bit More

• Section 4.4 discusses in some detail how to get from the 32 bits of the

instruction (really just the opcode and function fields) to the needed control

signals. To some extent it’s common sense, with one possible exception . . .

• ALU as designed in Appendix B uses 4 bits to represent which operation is to

be done (2-bit input to multiplexor plus 2 “inverted input” signals). Seems like

it would be simple enough for the main control unit to generate these directly,

no? However, turns out to be even simpler to split functionality into two parts

— generate a 2-bit “ALU operation” from just the opcode field, and then use

that plus (for some instructions) the function field to tell the ALU what to do.

Slide 6

Instruction Execution Details

• Section 4.4 gives some details of what happens for each kind of instruction in

the subset (initially omitting jumps). What we need to add for jumps — end of

section.

• We won’t discuss more in class, but you should read carefully — not to

memorize, but to understand. May be useful to try to write down, for an

example instruction, inputs to all the combinational logic blocks and state

elements. (Example(s) if time permits.)



CSCI 2321 April 9, 2015

Slide 7

Multi-Cycle Implementations

• So, we have a sketch for an implementation that executes one instruction per

cycle. But clearly this isn’t how all real systems work (if nothing else, many

don’t separate instruction memory from data memory).

• Why not? means cycle time is limited by length of longest path through the

whole path, while many instructions can be done faster.

• What to do? break up work into multiple pieces . . .

Slide 8

Instruction Phases

• Work involved in fetching and executing a MIPS instruction can be split into

phases:

– Fetch instruction.

– Read register operands and (at the same time) decode instruction. “At the

same time” because of instruction format(s).

– Do operation or address calculation.

– Access data memory.

– Write register result.

• How does this help? Two possibilities . . .



CSCI 2321 April 9, 2015

Slide 9

Simple Multi-Cycle Implementation

• One approach is to stick to the idea of executing one instruction at a time, but

break things up so instructions potentially take multiple cycles. (How’s that

going to help? Well . . . )

• Control logic is now going to be more complex — must do everything we were

doing before, plus keep track of which phase we’re in. (Recall discussion of

finite state machines from Appendix B.)

• However, one potential payoff is skipping unused phases — e.g.., the

R-format (arithmetic/logic) instructions don’t need to access data memory,

and indeed we don’t need separate instruction/data memories.

Slide 10

Pipelined Implementation

• Another approach is to use “pipelining”: Modeled after assembly line; many

real-world analogies possible. Textbook describes a laundry “assembly line”,

with stages corresponding to washing, drying, folding, and putting away.

• Could base a pipelined implementation of MIPS on the same phases used for

a multi-cycle implementation, with one pipeline stage per phase.

• How does this help? well, it doesn’t make individual instructions faster, but it

means you can get more of them done in a given time.

• Like the simple multi-cycle implementation, it means added hardware

complexity (next time). Also introduces some new potential problems . . .



CSCI 2321 April 9, 2015

Slide 11

Pipelining — “Hazards”

• Another potential downside to pipelining (in addition to increased complexity)

is that we have to worry about “hazards” — ways in which one instruction

might interfere with another.

• Several ways in which things could go wrong . . .

Slide 12

Pipelining Complications — “Structural Hazards”

• Idea is that two things we want to do at the same time conflict — e.g., read

instruction from memory and read data from memory.

• Only solution is to avoid. For MIPS, we could go back to separate instruction

and data memories.



CSCI 2321 April 9, 2015

Slide 13

Pipelining Complications — “Control Hazards”

• Idea is that we need to make a decision but can’t yet — e.g., we can’t know

what instruction should logically follow a conditional branch until we have the

branch partly executed.

• Several possible solutions:

– Stall — just wait until we can be sure.

– Predict — make a guess, and if we guess wrong undo/redo.

– Use delayed branches — always execute instruction after conditional

branch, then jump / don’t jump. (This is what MIPS does — meaning that

the assembler programs we’ve written don’t really represent how things

work.)

Slide 14

Pipelining Complications — “Data Hazards”

• Idea is that we need data computed by one instruction before it would

normally be available — e.g., two successive R-type instructions, or a load

followed by an R-type instruction.

• Several possible solutions:

– Stall — just wait until data is available. (Probably not a good solution.)

– Add hardware for “forwarding” — special hardware to route results to next

instruction in addition to regular destination. May or may not be possible.

– Use delayed loads — don’t allow instruction after a “load” to use the result.

(This is what original MIPS did.)



CSCI 2321 April 9, 2015

Slide 15

Pipelining — Implementation Overview

• First might observe that the five phases into which we’ve divided instruction

processing seem to map onto the picture of our datapath — what we’re doing

is breaking up the flow of information through it into steps(!).

• So the idea will be to somehow partition the datapath so we can have each

piece working on a different instruction. But for that to work, we have to add

groups of registers between pieces, so we save the results of one step for the

next step.

• Ignoring data and control hazards, this gives what’s sketched in Figures 4.33

and 4.35. (Details of how to deal with data and control hazards are interesting

but beyond what we can do in this course. Skim in textbook, read more

carefully if interested.)

Slide 16

Minute Essay

• None — quiz.


