
CSCI 2321 April 23, 2015

Slide 1

Administrivia

• Reminder: Quiz 5 Tuesday. Topics from Chapter 4.

• Reminder: Homework 4 due Tuesday. There will likely be one more

homework after all, at least one programming problem, to be assigned by next

Tuesday and due around the date of the final.

Slide 2

Memory Hierarchy — Overview

• Significant overlap between Chapter 5 and material covered in

operating-systems course (as I teach it anyway). In previous years most

students went on to that course. Now possibly not. Oh well!

• A key idea (borrowed from one writer of o/s textbooks): In a perfect world, we

could have as much memory as we wanted, and it would be very fast and

very cheap. In the real world, there are tradeoffs (e.g., fast versus cheap, fast

versus large).



CSCI 2321 April 23, 2015

Slide 3

“Principle of Locality”

• Basic underlying idea — most applications exhibit locality with regard to

memory.

• “Temporal locality” — memory locations referenced in the near past are likely

to be referenced again in the near future.

• “Spatial locality” — memory locations close together in space likely to be

referenced close together in time.

Slide 4

Memory Hierachy and Caching

• To exploit temporal locality, can use “caching” — keep copies of

frequently-used data in faster but smaller memory. Can do this on multiple

levels.

• To exploit spatial locality, can move data between levels in blocks.

• Terminology — cache hit, cache miss, cache block/line.

• Notice that while impact of caching on performance can be significant, it

should not affect results (which is why it makes some sense to just ignore it

initially).



CSCI 2321 April 23, 2015

Slide 5

Caches (Between Processor and RAM) —
Executive-Level Summary

• To make these work, we need:

Some way to map memory address to cache location — can be simple

(“direct map”) or not.

Some way to say, for each cache location, what memory address it’s currently

associated with, and whether the data is valid.

• Read “from memory” tries cache first, and then if not found there goes to

RAM and updates cache.

• Write “to memory” is maybe more interesting — writes to cache but then must

at some point write to RAM also — maybe right away (easier to get right but

can be slow) or later.

Slide 6

Virtual Memory — Executive-Level Summary

• Basic idea here is to fake having more RAM than you really have, by keeping

some data that would be in RAM on disk. In a sense, RAM is a cache for the

“real” memory, on disk(!).

• Also provides a nice way to support multitasking — notion of “processes”,

each with its own “address space”, with an operating system that maps this

abstraction onto the hardware, by mapping “program addresses” (in a

process’s address space) to “physical addresses” (in RAM). Lots of details

here, but the basic idea is fairly simple. One big advantage is more control

over what data each process can access.



CSCI 2321 April 23, 2015

Slide 7

Cache Coherence — Executive-Level Summary

• Clearly(?) possible for cached data to be out of synch with data in memory.

• First step toward managing possible impact is to clearly define what we want,

and then figure out how to either solve the possible problems or work around

them.

• Clearly(?) much more difficult with multiple processing elements each of

which has its own cache.

Slide 8

Caches and Applications Programming

• Mostly the memory hierarchy (including virtual memory) is managed

transparently by a combination of hardware and (operating-system) software,

so the first approximation presented in introductory courses (memory is

essentially a really big array of bytes, with addresses as indices) is okay,

especially if you just want right answers.

• However, effects on performance can be significant, so if you want right

answers fast . . .

For single-threaded programs, key idea is to maximize locality (temporal and

spatial). Rearranging order in which data is accessed can have a big effect.

For multi-threaded programs, also need to consider whether multiple threads

need to share access to the same data (problem for correctness too!) or even

nearby data (“false sharing” — no effect on correctness but can be slow).



CSCI 2321 April 23, 2015

Slide 9

Minute Essay

• A question about material from previous lecture(s): Many processors have a

notion of two modes of operation, a privileged one for when they’re doing

operating-system stuff and an unprivileged one for regular applications.

Attempts to do privileged things while in unprivileged mode generate

exceptions. What if anything can you say about how this might help in making

the whole system (hardware plus software) robust and secure? (Speculate!)

• How much of today’s discussion was familiar?

Slide 10

Minute Essay Answer

• If regular applications execute in unprivileged mode, the hardware can

enforce some restrictions on what they can do (e.g., only request I/O by going

through the operating system). How do you get from unprivileged mode to

privileged mode then? As part of exception processing — hardware transfers

control to fixed location(s) and switches to privileged mode.


