
CSCI 2321 (Computer Design), Spring 2017

Homework 3

Credit: 50 points.

1 Reading

Be sure you have read, or at least skimmed, all assigned sections of Chapter 2 and Appendix A.

2 Honor Code Statement

Please include with each part of the assignment the Honor Code pledge or just the word “pledged”,
plus one or more of the following about collaboration and help (as many as apply).1 Text in italics
is explanatory or something for you to fill in. For written assignments, it should go right after your
name and the assignment number; for programming assignments, it should go in comments at the
start of your program(s).

• This assignment is entirely my own work. (Here, “entirely my own work” means that it’s
your own work except for anything you got from the assignment itself — some programming
assignments include “starter code”, for example — or from the course Web site. In particular,
for programming assignments you can copy freely from anything on the “sample programs
page”.)

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in the
course, the instructor, etc. (Here, “help” means significant help, beyond a little assistance
with tools or compiler errors.)

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

3 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (5 points) Consider this fragment of MIPS code, intended to be a typical MIPS version of
if/else:

1Credit where credit is due: I based the wording of this list on a posting to a SIGCSE mailing list. SIGCSE is
the ACM’s Special Interest Group on CS Education.

1

CSCI 2321 Homework 3 Spring 2017

slt $t0, $s1, $s2

beq $t0, $zero, Else

addi $s3, $s3, 1

addi $s4, $s4, 1

j After

Else:

addi $s3, $s3, -1

addi $s4, $s4, -1

After:

Translate the beq and j instructions into machine language, assuming that the first instruction
is at memory location 0x00400040. (You don’t have to translate the other instructions, just
those two.)

2. (5 points) The MIPS assembler supports a number of pseudoinstructions, which look like
regular instruction but which assemble into one or more other machine instructions. We’ve
seen how SPIM assembles the la pseudoinstruction into a combination of lui and ori. As
another example, pseudoinstruction ble generates two instructions, a slt and then a bne,
using “assembly temporary” register $at, with

ble $t0, $1, There

being translated to

slt $at, $t1, $t0

bne $at, zero, There

If you wanted the assembler to support the following pseudoinstructions, say what code (using
real instructions) the assembler should generate for the given examples. As with ble, you
should use $at if you need an additional temporary register.

• bnz with the two operands (register number and target label/address), that branches to
the target if the register contents are nonzero. Example:

bnz $s0, There

• swap with two register-number operands, which exchanges the values in the two registers.
Example:

swap $s0, $s1

3. (15 points) Caveat: This is a new problem and we may discover that it’s not clearly
explained. So if there’s something that doesn’t make sense, please ask!

For this problem your mission is to reproduce by hand a little of what an assembler and
linker would do with two fairly meaningless2 pieces of MIPS assembly code. The textbook
has an example starting on p. 127 illustrating more or less what I have in mind here, and we
reviewed the example in class, but on reflection it doesn’t seem that clear to me, so for this
assignment I want you to approach the problem a little differently.

First, the two files, one containing a main procedure:

2They don’t do anything very interesting, but together they do represent a complete program.

2

CSCI 2321 Homework 3 Spring 2017

.text

.globl main

main:

addi $sp, $sp, -4

sw $ra, 0($sp)

jal subpgm

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

.end main

.data

.globl dataX

local: .word 0

dataX: .word 1, 2

and another a procedure it calls:

.text

.globl subpgm

subpgm:

addi $sp, $sp, -4

sw $ra, 0($sp)

copy data (two "words") from dataX to dataY

la $s0, dataX

la $s1, dataY

lw $t0, 0($s0)

sw $t0, 0($s1)

lw $t0, 4($s0)

sw $t0, 4($s1)

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

.end subpgm

.data

.globl dataY

dataY: .space 8

For the “assembly” phase, I don’t want you to actually translate the instructions into machine
language, but I do want you to construct for each file a table with information as listed
below. Note that you will need to expand the two la pseudoinstructions. The example in the
textbook doesn’t really show how to do this; they instead show how to deal with lw and sw

referencing a symbol and assembled into something using the $gp register.3 Instead I want
you to expand these instructions in the way SPIM does: each as a lui followed by a ori.
(You can see examples of this by loading any of the sample programs that use la into SPIM
and looking at what it shows for code.)

3I’m not quite sure how they get this from MIPS assembly source; SPIM will accept load/store instructions
referencing a label, but it turns them into lui/ori pairs in the same way it does for la.

3

CSCI 2321 Homework 3 Spring 2017

(Hint: Before going further, you’ll probably find it useful to write down, for each of the two
files, what’s in its text segment (a list of instructions and their offsets, remembering to expand
any pseudoinstructions), and what’s in its data segment (a list of variables/labels and their
offsets and sizes).)

Then produce, for each of the two source files, a table with the following. (Use hexadecimal
to represent addresses and offsets.)

• Text (code) and data sizes, in hexadecimal.

• “Relocation information”: For each instruction that involves an absolute address (jumps
and the instructions corresponding to a la pseudoinstruction):

– Its offset in the text segment.

– The instruction type (as in the textbook example).

– The symbol referenced (“dependency” in the textbook example).

• A symbol table listing all global symbols (those named in .globl directives), showing
for each:

– Its name.

– Which segment it’s in (text or data) and its offset into that segment.

For example. the first global symbol in the first file is main, at offset 0 into the text
segment.

• (Initially I asked for a table of unresolved references, but on reflection it doesn’t make
sense to have one, since: Probably a real assembler would resolve references to local
symbols and just list here anything it couldn’t resolve, but for simplicity I want you to
just resolve all references in the link step.)

Next, “link” these two files to produce information for an executable for the SPIM simula-
tor. Since programs in this simulator always have their text segments at 0x00400000 and
their data segments at 0x10000000, absolute addresses into either segment can be based on
these values. (Normally an executable file might include “relocation information” for any
instructions containing absolute addresses that would need to be changed when the program
is loaded into memory, but we’ll skip that.)

(Hint: Notice that the text segment of the executable is just the text segment for the first file
followed by the one for the second file, and similarly for the data segment. So you’ll probably
find it useful to come up with a list of what’s in each segment, similar to what you did in the
first step, but with addresses rather than offsets.)

The information I want is this:

• Text (code) and data size, in hexadecimal.

• A symbol table showing locations of all symbols and their addresses (e.g., main is at
0x00400000). (Really I think this should just be the global symbols, but to patch the
unresolved references you’ll need some non-global labels, and this is the simplest way to
achieve that.)

• Patched versions of the instructions from the object files’ “relocation information” sec-
tions, in the form of another table, one entry per instruction, with:

– The instruction’s offset (into combined text segment).

– The patched instruction, in a form that looks like source code but doesn’t reference
labels — so for example a j main would become j 0x00400000. (Use hexadecimal
for the constant/immediate values here.)

4

CSCI 2321 Homework 3 Spring 2017

4 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu with each file as an attachment. Please use a subject line that mentions the course
and the assignment (e.g., “csci 2321 hw 3” or “computer design hw 3”). You can develop your
programs on any system that provides the needed functionality, but I will test them on one of the
department’s Linux machines, so you should probably make sure they work in that environment
before turning them in.

1. (10 points) Add code to your solution4 to textbook problem 2.27 from Homework 2 to make
it a complete program that, run from SPIM, prompts for values for a and b and prints the
ending values of the elements of D. I.e., for output the program should do the equivalent of
the C code

for (k=0; k<4*b; k++)

printf("%d\n", D[k]);

Programs echo.s and echoint.s on the sample programs page show how to input and output
text and integer values.

(I think this is also a good opportunity to tweak your solution so it uses registers $s3 and
$s4 (rather than $t0 and $t1) for variables i and j, but if you can make the program work
without doing that, okay.)

2. (15 points) Problem 2.31 from the textbook asks you to write a MIPS implementation of
a recursive function fib to compute elements of the Fibonacci sequence. For this problem,
your mission is to write this MIPS function and incorporate it into a complete program that,
run from SPIM, prompts for an integer value N, calls fib to compute the N-th element of
the sequence, and prints the result. (To get full credit your program must use a recursive
function.) Program factorial.s on the sample programs page may be helpful, since it shows
how to do the needed input/output and also contains an example of a recursive procedure
written in MIPS.

4Or you can start from my sample solution.

5

