
CSCI 2321 (Computer Design), Spring 2017

Homework X1

Credit: Up to 30 extra-credit points. (But be advised that you can’t get more than 50 extra-credit
points on this assignment and Homework X2 combined.)

1 Overview

This set of extra-credit problems covers material from the first part of the course. You can do
as many as you like, but you can only receive a total of 50 extra points on this assignment and
Homework X2 combined.

NOTE that the usual rules for collaboration do not apply to this assignment. More in the
following section.

2 Honor Code Statement

Please include with each part of the assignment the Honor Code pledge or just the word “pledged”,
and the statement “This assignment is entirely my own work” (where “my own work” means “except
for anything I got from the assignment itself, such as starter code, or from the course Web site
or sample solutions to other assignments). For this assignment you should not work with or seek
help from other students or from tutors, but you can consult other sources (other books, Web sites,
etc.), as long as you identify them.

3 Problems

Answer the following questions. You may write out your answers by hand or using a word processor
or other program, but please submit hard copy, either in class or in one of my mailboxes (outside
my office or in the ASO).

1. (Optional: Up to 10 extra-credit points.) For this problem your mission is to reproduce by
hand a little of what an assembler and linker would do, as you did in the last problem of
Homework 3. So you are to do two phases:

• Assembly, in which you produce for each input file the following:

– Sizes of text (code) and data segments, in hexadecimal. (Correction/clarification:
Remember that la is a pseudoinstruction that expands to a combination of lui

and ori. li is also a pseudoinstruction that potentially expands to the same pair,
but it looks like SPIM’s built-in assembler produces both instructions only if the
immediate value being loaded is more than 16 bits; for small values it expands it
just to an ori. You should do likewise. (So, as long as the value being loaded is
“small enough”, the assembler expands li to just ori.)

– “Relocation information”, as in Homework 3 — a list/table with one entry for each
instruction that needs to be patched based on where in memory the program needs
to be loaded.

1

CSCI 2321 Homework X1 Spring 2017

– A symbol table with entries for all symbols, showing for each its name, which segment
it’s in (text or data), and its offset into that segment.

• Linking, in which you produce:

– Sizes of combined text (code) and data segments, in hexadecimal.

– A symbol table showing locations of all symbols and their addresses.

– Patched versions of all the instructions from all the “relocation information” seg-
ments from the assembly phase, in the form described in Homework 3.

The input files are these:

• main.s:

.text

.globl main

main:

opening linkage

addi $sp, $sp, -4

sw $ra, 0($sp)

prompt and get two integers from "console"

la $a0, prompt

li $v0, 4 # "print string" syscall

syscall

li $v0, 5 # "read int" syscall

syscall

la $t0, dataX

sw $v0, 0($t0) # save result in dataX

li $v0, 5 # "read int" syscall

syscall

la $t0, dataY

sw $v0, 0($t0) # save result in dataY

call procedure to add and print

la $a0, dataX

la $a1, dataY

jal foobar

closing linkage

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

.end main

variables and constants

.data

prompt: .asciiz "Enter two integers, one per line:\n"

note that .word forces alignment -- i.e., causes assembler to insert

space if not on a word boundary (address a multiple of 4)

dataX: .word 0

dataY: .word 0

• foobar.s:

.text

2

CSCI 2321 Homework X1 Spring 2017

.globl foobar

foobar:

add two integers and print result

$a0, $a1 have addresses of two integrs

opening linkage

addi $sp, $sp, -4

sw $ra, 0($sp)

compute result into $s0

lw $t0, 0($a0)

lw $t1, 0($a1)

add $s0, $t0, $t1

print

addi $a0, $s0, 0

li $v0, 1 # "print int" syscall

syscall

la $a0, foobar_nl

li $v0, 4 # "print string" syscall

syscall

closing linkage

lw $ra, 0($sp)

addi $sp, $sp, 4

jr $ra

variables and constants

.data

foobar_nl: .asciiz "\n"

and for the link step you should assume:

• Object code for main.s is loaded first, then object code for foobar.s.

• The combined text segment starts at 0x04000000.

• The combined data segment starts at 0x10000000.

4 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu with each file as an attachment. Please use a subject line that mentions the course
and the assignment (e.g., “csci 2321 hw X1” or “computer design hw X1”). You can develop your
programs on any system that provides the needed functionality, but I will test them on one of the
department’s Linux machines, so you should probably make sure they work in that environment
before turning them in.

1. (Optional: Up to 10 extra-credit points.) For this problem, you are to write a MIPS
procedure that, given a (null-terminated) string, tries to convert it to a signed integer and
reports success/failure. More explicitly, this procedure should get the address of the string
as the first argument (in $a0) and produce two results:

• An “error code” in $v1), where 0 means success, -1 means the string doesn’t represent
a signed integer, and -2 means the conversion wasn’t possible because it would cause
overflow.

3

CSCI 2321 Homework X1 Spring 2017

• If there was no error, $v0 should contain the result of the conversion.

So “10”, “-20”, and “2147483647” (231 − 1) are all valid, but “10-”, “abcd”, “10ab”, and
“2147483648” (231) are not. To get maximum points you need to detect both kinds of errors,
but you can get up to 8 points if you do everything except the check for overflow. Other
“corner cases” include the empty string and “-”, both of which should produce an error result
(-1), but here too if you don’t make that work you won’t lose many points.

Starter program test-convert-int.s1 contains code to prompt the user for a text string, read
it, call the convert procedure, and print the results. Your mission is to fill in the body of the
convert procedure so it works as described.

Sample executions:

% spim -f test-convert-int.s

Loaded: /usr/share/spim/exceptions.s

Enter a line of text:

10

Input 10

Result 10

% spim -f test-convert-int.s

Loaded: /usr/share/spim/exceptions.s

Enter a line of text:

-20

Input -20

Result -20

% spim -f test-convert-int.s

Loaded: /usr/share/spim/exceptions.s

Enter a line of text:

abcd

Input abcd

Error -1

% spim -f test-convert-int.s

Loaded: /usr/share/spim/exceptions.s

Enter a line of text:

1000000000000

Input 1000000000000

Error -2

HINTS:

• Note that SPIM seems happy to accept character literals in the same format as C, so
for example you can put the ASCII characters for 0 in a register by writing

li $t0, ’0’

and the same thing works for other characters, such as the null character:

1http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2017spring/Homeworks/HW0X1/Problems/
test-convert-int.s

4

CSCI 2321 Homework X1 Spring 2017

li $t0, ’\0’

I strongly advise that you do this rather than looking up ASCII values and putting them
in your code: MIPS assembly code is hard enough to read already, and using the ASCII
values directly just makes it worse.

• Think about the algorithm first, but if nothing occurs to you, see this footnote2.

2. (Optional: Up to 10 extra-credit points.) For this problem, you are to write a MIPS
procedure that, given a memory address p and a number of bytes n, prints hexadecimal
representations of n bytes starting at p. So for example if the p points to a “ab” and n is 2,
the procedure should print “61 62” (hexadecimal representations of ASCII values for ’a’ and
’b’), while if p points to an integer (in memory) with value 5 and n is 4, the procedure should
print “05 00 00 00” (why is the 5 first? SPIM is little-endian, so bytes in integer types are
stored in reverse order). More explicitly, this procedure should get p as the first argument (in
$a0) and n as the second argument (in $a1) and print (to the “console”, using SPIM system
calls) as described. It doesn’t need to return anything in $v0 and $v1.

Starter program test-print-hexbytes.s3 contains code to prompt the user for a text string,
read it, call the procedure to print the whole buffer, and then prompt for an integer, read it,
and call the procedure to print the 4-byte result. Your mission is to fill in the body of the
print procedure so it works as described. Sample execution:

% spim -f test-print-hexbytes.s

Loaded: /usr/share/spim/exceptions.s

Enter a line of text:

abcd

Input abcd

Result 61 62 63 64 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Enter an integer:

20

Input 20

Result 14 00 00 00

HINTS:

• You will probably want to use the lb instruction (“load byte”) to work with individual
bytes.

• One way to do the conversion is to split the resulting byte into two half-bytes (each
representing one hex digit) and then use those as indices into a string containing all the
hex digits ("0123456789abcdef").

2You could do it in C thus, assuming p starts out pointing to the beginning of the string (note that this doesn’t
do any error checking, but you can figure that out?

/* put result of conversion in "work", ignoring errors */

int work = 0;

while (*p != ’\0’) {

work = work*10 + (*p - ’0’);

++p;

}

3http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2017spring/Homeworks/HW0X1/Problems/
test-print-hexbytes.s

5

CSCI 2321 Homework X1 Spring 2017

• SPIM has a “print character” system call that you wil probably find useful.

6

