
CSCI 2321 January 18, 2017

Slide 1

Administrivia

• (A little about me.)

• First homework to be on the Web soon; likely due date is a week from

Monday. I will send e-mail.

Slide 2

From Programs to Executables — Recap/Review

• Source code is translated into assembly language (symbolic representation of

machine language via a compiler, then converted to object code (machine

language, plus other information) via an assembler. Note that all

compilers/assemblers follow some of the same conventions for passing of

arguments, etc. — this is part of an ABI (“application binary interface”).

Another part of the ABI defines how application programs make requests of

the operating system.

• Object code is linked with library code via a so-called linker, making use of

that “other information” (such as references to library code) to form an

“executable” file, which conforms to the part of the ABI that specifies a format

specific to architecture and operating system. Typically this file contains

machine language plus extra information such as size.



CSCI 2321 January 18, 2017

Slide 3

From Programs to Executables, Continued

• At runtime, operating system loads machine language from executable file

and transfers control to address of starting instruction. This is also the point at

which calls to dynamically-linked library code are resolved.

• (As noted last time, not all languages work this way, but this is the “compile to

native code” model used by, e.g., C and C++.)

Slide 4

A Little About Integrated Circuits

• Conceptual view of hardware:

– Transistor — on/off switch controlled by electrical current.

– Combine/connect a lot of transistors to get circuit that does interesting

things (e.g., addition).

– Put a bunch of circuits together to get a chip / integrated circuit (IC). If lots

of transistors, VLSI chip.

• (Example of how to use this idea to build a simple circuit to invert one bit

linked from course “Useful links” page. In the later part of the course we’ll talk

about using inverters and other simple “gates” as building blocks for a

processor.)



CSCI 2321 January 18, 2017

Slide 5

A Little About Integrated Circuits, Continued

• Manufacturing process starts with a thin flat piece of silicon, adds metal and

other stuff to make wires, insulators, transistors, etc.

• Of course, this is all automated! Low-level chip designers use CAD-type tools,

which save designs in a standard format, which the chip designers

simulate/test with other software, and then send off to be fabricated.

• Typically make many chips on a wafer, discard those with defects, bond each

good one to something larger with pins to allow connections to other parts of

computer.

Slide 6

Defining Performance

• What does it mean to say that computer A “has better performance than”

computer B?

• Really — “it depends”. Some answers:

– Computer A has better response time / smaller execution time.

– Computer A has higher throughput.

• We’ll use execution time, and say

PerformanceA

PerformanceB
= n

exactly when

Execution timeB

Execution timeA
= n



CSCI 2321 January 18, 2017

Slide 7

Measuring Performance

• If we use execution time as criterion, how to measure?

• Wall-clock time seems fairest, since it includes

– Time for CPU to execute instructions.

– Any waiting for memory access.

– Any waiting for I/O.

– Any waiting for operating system.

• Is that easy to measure reliably / repeatably?

Slide 8

Measuring Performance, Continued

• No — to get repeatable measure of wall clock time, need an otherwise

unused system.

• So instead we could use “CPU performance” — amount of time CPU needs to

run program. Easier to measure, more consistent, and at least says

something about the processor.

• Even that, though, is not as simple as it might seem.



CSCI 2321 January 18, 2017

Slide 9

Measuring Performance, Continued

• CPU execution time for program X is given by

CPU cycles× clock cycle time

and then CPU cycles in turn is the product of count of instructions and cycles

per instruction.

(“Cycles”? processors typically are mostly-synchronous devices, in which all

the parts do some basic operation at fixed intervals called cycles.)

• And then it might seem like we can say something meaningful about what

happens if we change one of these numbers — but only if all other things

remain the same, which might or might be true!

Slide 10

Evaluating / Comparing Performance

• Trickier than it might seem to come up with one number that means

something.

• Approaches include

– Use the actual workload, on the actual hardware platform(s), and compare

times.

– Put together a representative simulated workload — “benchmark”; run and

compare times.

– Compare code size.

– Compare number of instructions per second (“MIPS” or “MFLOPS”, once).

• Alas, all of these are flawed in some way.

(In particular, paraphrasing someone whose name I don’t remember, “peak

MIPS is just the number you can’t go any faster than.”)



CSCI 2321 January 18, 2017

Slide 11

Minute Essay

• Suppose you are trying to decide which of two computers, call them Foo and

Bar, will give you the best performance. You run two test programs on Foo

and observe execution times of 10 seconds for one and 20 seconds for the

other. If the first program takes 5 seconds on Bar, how long does the second

program take? (Hint: This might be something of a trick question.)

• Other questions?

Slide 12

Minute Essay Answer

• It might seem like that second program would take 10 seconds on Bar, but in

truth you probably can’t be sure without doing the experiment, since the two

machines, or the two test programs, could differ in ways that would make this

obvious answer wrong.


