
CSCI 2321 January 23, 2017

Slide 1

Administrivia

• Note that for minute essays like the one last week, where there’s a “right”

answer, my answer will be in the slides online sometime after class.

• Homework 1 on the Web; due in a week. Note requirement for explicit pledge

and a brief statement about collaboration.

Slide 2

Minute Essay From Last Lecture

• (Review question and intended answer.)

• Not everyone got the “trick” aspect, but many did.



CSCI 2321 January 23, 2017

Slide 3

Executing Programs — Recap/Review

• Several ways source code can be executed:

• Interpreted directly (e.g., shell scripts).

• Compiled to intermediate form, interpreted/executed by

possibly-language-specific runtime system (e.g., Scala and Java).

• Compiled to “native code” (usually producing “executable”) and executed.

Slide 4

Running Executable Files — Recap/Review?

• What a processing element can do is fetch machine-language instructions

from memory (RAM) and execute them one at a time.

• So to execute a program — somehow get machine-language instructions into

memory and transfer control to a starting instruction.

• Several ways to do that, but most typical in general-purpose systems involves

operating system that reads contents of “executable file” from storage device.

Executable file contains machine-language instructions (a.k.a. “object code”)

and possibly other information (e.g., how much space to reserve for fixed

data).

• Programs can be completely self-contained or can contain instructions that

request operating-system services (e.g., for I/O).



CSCI 2321 January 23, 2017

Slide 5

Some Key Abstractions

• “Instruction set architecture” (ISA) — specification for processor, including

supported instructions and other low-level-but-still-abstract details, such as

how many registers and what they’re used for.

• “Application Binary Interface” (ABI) — specification addressing how program

interacts with environment (hardware and operating system), and how various

program components (functions etc.) interact at the machine-code level as

opposed to the source-language level (as in API).

• The word “specification” here implies potential for multiple implementations.

Means that compiled programs can run on any system that implements the

right ISA and ABI.

Slide 6

Measuring Performance — Recap/Review

• Many, many factors influence execution time for programs, from choice of

algorithm to “processor speed” to system load, as discussed previously.

• Textbook chooses to focus in this chapter on “execution time” by which the

authors mean processor time only, excluding delays caused by other factors.

Might not be meaningful for comparing systems but seems like reasonable

way to compare processors at least.



CSCI 2321 January 23, 2017

Slide 7

Calculating Program Execution Time (CPU Only)

• CPU execution time for program X is given by

CPU cycles× clock cycle time

• We can expand this a bit to get

instruction count× cycles per instruction× clock cycle

• We can then come up with many variations — e.g., one that uses clock rate

rather than clock cycle time — based largely on consideration of units of

measure (e.g., clock cycle time is seconds per cycle, while clock rate is cycles

per second).

Slide 8

Sidebar: Dimensional Analysis

• (Or at least I think that’s close to the term I want.)

• Idea here is to approach “word problems” in terms of units, treating them

almost like factors in multiplication and division. (Example is converting, say,

inches to cm by multiplying by 1 in the form 2.54cm/1in.)

• If the formula you propose to use produces the right units (e.g., seconds for

execution time), there’s at least a good chance it’s the right one.



CSCI 2321 January 23, 2017

Slide 9

Calculating Execution Time, Continued

• One factor in the basic formula is cycles per instruction. What if that isn’t the

same for all instructions?

• Common sense(?) may tell you . . .

Slide 10

Calculating Execution Time, Continued

• If different types of instructions need different numbers of cycles, have to do

something like a weighted sum. Usually instructions fall into one of a few

“classes”, each with a common number of cycles per instruction.

• So, compute times for each “class” of instruction and add. Would also allow

you to compute an average CPI.

• Simple example: For a processor with clock rate 2GHz and two classes of

instructions taking 1 and 2 CPI, and a program that requires 1010 instructions,

evenly split between the two classes, how much processor time does it need?



CSCI 2321 January 23, 2017

Slide 11

Parallelism (Hardware)

• Executive-level definition of “parallelism” might be “doing more than one thing

at a time”. In that sense, it’s been used in processors for a very long time, via

pipelining,and (in high-performance processors) vector processing.

• For a (relatively!) long time, hardware designers were able to make single

processors faster using these and other techniques (e.g., reducing sizes of

things). In the mid-2000s, however, they ran out of ways to do that. But they

could still put larger numbers of transistors on the chip. How to use that to get

better performance?

Slide 12

Parallelism (Hardware), Continued

• All that time there were people saying we would hit a limit on single-processor

performance, and the only answer would be paralleism at a higher level —

executing multiple instruction streams at the same time.

• So . . . use all those transistors to put multiple cores (processing elements) on

a chip!

• Why wasn’t this done even earlier? because alas the “magic parallelizing

compiler” —- the one that would magically turn “sequential” programs into

“parallel” versions — has proved elusive, and (re)training programmers is not

trivial.



CSCI 2321 January 23, 2017

Slide 13

Parallelism (Hardware/Software)

• Multicore computers offer one kind of potential parallelism — “multithreading”.

• Networks of computers offer another — “message-passing”.

• Sufficiently advanced graphics processors offer yet another — limited form of

multithreading.

• Exploiting any of these traditionally requires significant programmer effort.

Hiding the details in libraries — research topic for many years, becoming

much more mainstream now that the hardware is.

Slide 14

Parallelism — Performance

• One use of multithreading is simply to make the code simpler, at least for the

programmer — as an example consider the typical GUI-based program,

where it makes sense to think in terms of one thread of control for getting

user input and one for drawing. Doable on a single processor via interleaving.

• But it can also be used to improve performance. Often a discussion of “how

much” is in terms of “speedup”.

• Here, “speedup” is defined as some sort of function of the number of

processing elements (cores, fully independent processors, etc.), where the

speedup for P processing elements is the ratio of execution time using 1 PE

to execution time using P PEs.



CSCI 2321 January 23, 2017

Slide 15

Parallel Performance, Continued

• While it might seem like with P processing elements you could get a speedup

of P , in fact most if not all programs have at least a few parts that have to be

executed sequentially. This limits P , and if we can estimate what fraction of

the program is sequential we can compute speedups for some values of P .

• Further, typically “parallelizing” programs involves adding some sort of

overhead for managing and coordinating more than one stream of control.

• But even ignoring those, as long as any part must remain sequential . . .

Slide 16

One More Thing About Performance — Amdahl’s Law

• (Named after Gene Amdahl, a key figure in developing some of IBM’s early

mainframes who left to start his own company to made hardware

“plug-compatible” with IBM’s. Interaction between the two companies was —

complicated.)

• His observation (“Amdahl’s law”) can be more generally stated, but in the

context of parallel programming it’s stated thus:

If γ is the “serial fraction”, speedup on P PEs is (at best, i.e., ignoring

overhead)

S(P ) =
1

γ + 1−γ

P

and as P increase, this approaches
1

γ
— upper bound on speedup.



CSCI 2321 January 23, 2017

Slide 17

Preview — “Architecture” as Interface Definition

• From software perspective, “architecture” defines lowest-level building blocks

— what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification — designers

must build something that behaves the way the specification says.

Slide 18

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program —

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point).



CSCI 2321 January 23, 2017

Slide 19

Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.

• (Yes, these can sometimes be opposing forces!)

Slide 20

Why Study MIPS Architecture?

• Goal is not to become assembly-language programmers, but to understand

how things work at this level. Once you understand basic principles, learning

another assembly language is easier.

• MIPS architecture is simple but representative.

Aside: SPIM simulator will let you experiment (commands spim and

xspim).



CSCI 2321 January 23, 2017

Slide 21

Minute Essay

• We did a simple example earlier, as follows: For a processor with clock rate

2GHz and two classes of instructions taking 1 and 2 CPI, and a program that

requires 1010 instructions, evenly split between the two classes, how much

processor time does it need?

• How much processor time would the program need if the clock rate increased

to 4GHz but all instructions took 3 cycles?

• (And — any other questions?)

Slide 22

Minute Essay Answer

• For the original example, time is

(0.5× 1010 × 1) + (0.5× 1010 × 2)

2× 109

which is 7.5 (seconds).

• For the changed problem, time is

1010 × 3

4× 109

which is also 7.5 seconds. (I didn’t really plan it that way, but interesting?)


