CSCT 2321 January 25, 2017

Administrivia

o Reminder: Homework 1 due Monday. For written assignments (such as this
one), hardcopy please, in class or in my mailbox by 6pm.

Slide 1
Minute Essay From Last Lecture
o Many people got the intended answer but not all, and some were pretty far off.
| replied to all who were far off; check slides for intended answer.
Slide 2

CSCT 2321 January 25, 2017

“Architecture” as Interface Definition — Review

e From software perspective, “architecture” defines lowest-level building blocks
— what operations are possible, what kinds of operands, binary data formats,

etc.

e From hardware perspective, “architecture” is a specification — designers
Slide 3 must build something that behaves the way the specification says.

4)
A Bit About Assembly Language Syntax

e Syntax for high-level languages can be complex. Allows for good expressivity,
but translation into processor instructions is complicated.

e Syntax for assembly language, in contrast, is very simple. Less expressivity
but much easier to translate into (binary form of) instructions.

Slide 4

CSCT 2321 January 25, 2017

Arithmetic Instructions — Addition

e |Instruction for integer addition (in assembly-language form):
add a, b, c
Adds b and c giving a.
(Notice the format — symbolic name, operands.)
Slide 5 ® |[s this expressive enough?
e Should we have more instructions (with different numbers of operands, e.g.)?
Basic principle: “Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic
instructions have exactly three operands.

e sub (subtraction) is similar. Multiplication and division are more complicated,

S0 punt for now.

o What are the operands? Registers. What are those? Well ...

. J

Registers

® Access to main memory is slow compared to processor speed, so it's useful
to have a within-the-chip memory — “registers”.

e MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

o Would more be better?

Slide 6 Basic principle: “Smaller is faster.”

e In machine language, reference by number.

e In assembly language, useful to adopt conventions for which registers to use
for what, use symbolic names indicating usage.
E.g., use registers 8 through 15 for “temporary” values (short-term), refer to
as $t 0 through St 7.

CSCT 2321 January 25, 2017

High-Level Languages Versus Assembly Language

e In a high-level language you work with “variables” — conceptually, names for
memory locations. You can do arithmetic on them, copy them, etc.

e In machine/assembly language, what you can do may be more restricted —
e.g., in MIPS architecture, you must load data into a register before doing
Slide 7 arithmetic.

e The compiler’s job is to translate from the somewhat abstract HLL view to
machine language. To do this, normally associate variables with registers —
load data from memory into registers, calculate, store it back. A “good”
compiler tries to minimize loads/stores.

Example

® Suppose we have thisin C
f=+(+h - (1 + 7
e What instructions should compiler produce? Assume we're using $s0 for £,
$slforg, $s2forh, $s3for i, $s4 for j.

Slide 8 (Symbolic register names starting $ s are used for for slightly longer-term
storage than the ones starting $t.)

(Where do values come from? Next topic .. .)

CSCT 2321 January 25, 2017

Memory, Revisited

e Usually we think of memory as big 1D array of 8-bit “bytes”, each with
address (index into array) and contents (value of array element).

e Often we operate on elements in groups of 4 — 32-bit “word”.

e MIPS is a “load/store” architecture, meaning access to memory is limited to
Slide 9 copying data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

(How would that be better? worse?)

Memory-Access Instructions — Load

e Goal is to get one 32-bit word from memory and put in a register.

e How to specify location in memory? Seems most useful to have address in a
register. For a little more flexibility, specify address in terms of “base” and
“displacement”.

Slide 10 1w r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

e sw (“store word”) instruction is similar.

CSCT 2321 January 25, 2017

Example

® Suppose we have thisin C
g =h + afl8];

e What instructions should compiler produce? Assume we're using $s3 for
starting (“base”) address of a, $s2 for h, $s1 for g.

Slide 11
Addition Using Constant
e “Add immediate”
addi rl, r2, c
adds constant ¢ (16-bit signed integer, can be negative) to contents of r2,
puts resultin r1.
Slide 12 e Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

CSCT 2321 January 25, 2017

Representing (Integer) Data in Binary

o Remember that to the hardware “it’s all ones and zero” — any data you're

working with.

e As an example — representation of signed integers using two’s complement
notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you
Slide 13 don’t remember.

A Little About the Simulator

e As mentioned, installed on our machines is a simulator you can use to try
your programs. It simulates a MIPS processor running a very primitive
operating system (just enough to load programs and do some simple console
I/0). It assembles programs on the fly.

Slide 14 e Your code goes in a file with extension . s. (Sample starter code on “Sample
programs” page. Contains many things we haven't talked about yet but could
still be useful for trying things out.)

e Start it with command xspim (spim for command-line version).

(Short demo.)

CSCT 2321

January 25, 2017

Slide 15

o Write MIPS assembly code for the following C program fragment:
a=b+c+d+ e
Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0

Optional: Can you think of more than one way to do it? If you can, does one
seem better than the other, and why?
OR

17.
Assume register $s0 contains the address of a (start of the array), and a is

o Write MIPS assembler code to exchange the values of a [0] and a [

an array of integers.

-

Slide 16

o One way:
add $s0, S$sl1, $s2
add $s0, $s0, $s3
add $s0, $s0, S$s4

Another way (not as good since uses more registers?):

add $t0, $sl1, $s2
add $tl, $s3, $s4
add $s0, $t0, stl
e One way:
1w $t0, 0($s0)
1w Stl, 4($s0)
sw $t0, 4($s0)
SwW $tl, 0($s0)

