
CSCI 2321 February 6, 2017

Slide 1

Administrivia

• Quiz 1 sample solution online.

• Reminder: Homework 2 due Wednesday.

• Next quiz next Monday.

Slide 2

Procedure Calls — Review/Recap

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Use jal to jump to called procedure (which saves the return address in

register $ra).

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 (and $v1, if used).

– Restore saved registers.

– Return to caller with jr $ra.

CSCI 2321 February 6, 2017

Slide 3

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand.

• Which is used? Defined by instruction format (R, I, J). (J? yes, format for jump

instructions that include a label — jal and j.)

Slide 4

Addressing Modes, Continued

• Register addressing: Value is in one of the general-purpose registers.

Assembler defines symbolic names for them (e.g., $t0).

• Immediate addressing: Value is in instruction itself (as in, e.g., addi).

• Base-displacement addressing: Value is in memory, with address calculated

by adding a displacement to what’s in a register. Example is memory-address

operand of lw, sw.

• PC-relative addressing (more shortly).

• Pseudo-direct addressing (more shortly).

CSCI 2321 February 6, 2017

Slide 5

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter. The

simulator doesn’t quite simulate this, unless run with the flag

-delayed branches.

• Example is conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

Slide 6

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter.

(Actually, address is address in instruction times 4, or’d with upper bits of

program counter.)

• Example is unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

CSCI 2321 February 6, 2017

Slide 7

Example

• As an example, try translating the following C first into MIPS assembly

language and into machine language. (Assume registers $s0 and $s1 are

being used for a and b.)

if (a < b)

a = a + 1;

else

b = b - 1;

Slide 8

A Little (More) About Assembly Language and

Assemblers

• We’ve done a few short examples of translating assembly language into

machine language.

• Normally this is done programmatically, by an “assembler”. Accepts symbolic

representations of instructions. Also uses some directives (starting with “.”,

e.g., .word) to help keep track of instructions, define character strings, etc.

Details for MIPS assembler in Appendix A.

CSCI 2321 February 6, 2017

Slide 9

Writing Complete Programs for the Simulator

• The simulator includes what’s in essence a very primitive operating system,

with facilities to load programs and do simple I/O. As in real operating

systems, I/O is done by making “system calls”.

• Complete programs can be run from the command line with, e.g., spim

-file hello.s.

Slide 10

System Calls

• System calls are how user programs request service from the operating

system — not just in MIPS, but in general. In MIPS the instruction is

syscall; other architectures have something analogous.

• System calls similar to procedure calls in some ways — need to communicate

to O/S which service you want (e.g., write some text to “standard output”) and

possibly parameters (e.g., the text to write). As with procedure calls, we do

this by putting values in particular registers, but then rather than jal we use

syscall.

CSCI 2321 February 6, 2017

Slide 11

System Calls, Continued

• An important distinction (discussed more in O/S courses, such as our

CSCI 3323): Code for “system call” executes as part of the O/S, which means

not subject to same restrictions as user programs (e.g., on memory access).

• Details (e.g., what services are offered) depend on the O/S. The very primitive

O/S included in spim supports some for simple I/O; details in Appendix A.

Slide 12

Complete Programs — Examples

• We can now write some simple but complete programs for the simulator(!).

• (Examples on “sample programs” page.)

CSCI 2321 February 6, 2017

Slide 13

Minute Essay

• What does the following code do? i.e., what is in registers $s0 and $s1

after it executes?

add $s0, $zero, $zero

addi $s1, $zero, 1

addi $s2, $zero, 4

label:

addi $s0, $s0, 1

add $s1, $s1, $s1

bne $s0, $s2, label

Slide 14

Minute Essay Answer

• We could trace through the code, which sets values in three registers and

then executes a loop:

$s0 is initially set to 0 and then takes on values 1, 2, 3, and 4

$s1 is initially set to 1 and then takes on values 2, 4, 8, and 16

$s2 is initially set to 4 and doesn’t change

