
CSCI 2321 February 13, 2017

Slide 1

Administrivia

• Notes from last time reorganized/revised a bit. “FYI”?

• Homework 3 written problems to be on the Web later today or early tomorrow

(I will send mail), programming problems(!) by Wednesday. All due a week

from Wednesday.

Slide 2

Minute Essay From Last Lecture

• Many people found Homework 2 to be difficult. A couple of people mentioned

really struggling, or being not sure about some of the questions. Do keep in

mind that you can ask! (Admittedly I’m not so easy to reach in person but

e-mail generally works.)

• Other than that, no real trend — some mentioned one question as interesting,

some another. It sounds like at least a few felt like they learned from it. Good!

I think “mostly you learn from homework” is most true in programming

classes, but true to some extent for all.



CSCI 2321 February 13, 2017

Slide 3

From Source Code to Execution — Recap/Review

• Four main phases, conceptually at least — compile, assemble, link, load.

• Real systems (or simulators) may combine steps, in appearance or even in

reality — e.g., a compiler might go directly from high-level source to object

code, in appearance or in fact, and the SPIM simulator assembles “on the fly”.

Slide 4

Compiling — Review

• As we’ve seen, translating from HLL source to assembly is not trivial.

• One reason compilers are so big and complicated, however, is that more and

more they try to “optimize” (generate code that’s more efficient than a naive

translation).

• As an example: Textbook goes into some detail about compiling C code to

loop through an array, showing a version that uses indices and one that uses

pointers. A “good” compiler will likely generate the same code for both.



CSCI 2321 February 13, 2017

Slide 5

Assembling — Review

• Job of the assembler is to produce “object code”. Details might vary among

platforms, but several basic parts: header information including sizes of code

and data segments, actual machine instructions, table of symbols defined,

and table of unresolved references.

• (“Code and data segments”? the former is machine code (.text in MIPS

assembly), the latter fixed-at-compile-time data (.data in MIPS assembly. If

you wonder “as opposed to what?” about that fixed-at-compile time — other

choices for where to keep data are on a stack and in some other area (“on the

heap”).

Slide 6

Assemblers — How They (Could?) Work

• (I admit I have not looked at actual code for an assembler, but the job seems

straightforward.)

• First start by establishing starting addresses for code and data segments.

• As each instruction or data declaration is encountered, add to appropriate

segment and increment “next” address. Also build “symbol table” of labels

versus addresses and list of references to labels and make note of any

declared as “global”.

• Resolve references using symbol table; make list of any that can’t be

resolved.

• Output sizes, code and data segments, and lists of symbols and unresolved

references. (Also, I think, need to output list of instructions using absolute

addresses, since these would have to be changed at link time.)



CSCI 2321 February 13, 2017

Slide 7

Linking — Review

• Job of linker is combine one or more object files into “executable file”. Details

vary among platforms, but must include anything the operating system needs

to load the program into memory and start it up — sizes of code and data

segments, location of starting address, anything that needs to be

resolved/fixed at runtime.

• So at a minimum, linker must:

– Merge tables of “global” symbols into combined symbol table.

– Use it to resolve unresolved references.

– Merge code segments, data segments.

– Modify any absolute addresses.

– Output executable file.

(All really kind of common sense given goal, no?)

Slide 8

Loaders — Recap/Review

• Job of loader is to load executable file into memory and start it up.

• Exactly what’s involved depends on platform, but at a minimum has to read

the program into memory and transfer control to starting address.

• Other things might include modifying absolute addresses to reflect actual

location in memory (necessary, e.g., if many programs in the same “address

space”), resolving references to dynamically-linked library code.

• As an example of this and also of combining steps, consider what must

happen with you load a (source) program into SPIM: It assembles (on the fly),

loads the result object code into memory, linking it (on the fly) with the tiny bit

of startup code that does a jal to main, and starts the startup code.



CSCI 2321 February 13, 2017

Slide 9

Linking — Example

• (Work through example starting on p. 127. Notice that we also need

information about locations of “text segment” (code) and “data segment”

(variables).)

• (More about this example next time.)

Slide 10

Minute Essay

• None — quiz.


