
CSCI 2321 February 20, 2017

Slide 1

Administrivia

• Reminder: Homework 3 due Wednesday. (I just updated/clarified the

instructions for the assemble-and-link problem; I hope they’re clear(er) now.)

• Quiz 3 next Monday. I’ll say something Wednesday about likely topics.

• Sample solutions to quizzes online, but now linked from the bottom of the

“lecture topics” page.

Slide 2

Quiz 2

• Generally people didn’t do very well with the second question.

• One common mistake was to use add or addi to assign a value to an array

element. (You need sw for that.)

• Even more common was leaving out a j so that after the “if” part executes

the “then” part is skipped. Remember that the processor executes instruction

in the order in which they appear in the code, unless there’s an explicit branch

or jump instruction.

CSCI 2321 February 20, 2017

Slide 3

This and That

• If you haven’t already found this — there is a table mapping opcodes to

instructions, hidden in Appendix A (figure A.10.2).

• Also in Appendix A is a summary of register names/usage. Worth noting that

with the exception of registers 0 and 31, they’re all the same to the hardware;

designating some of them for use as temporaries, another as a stack pointer,

etc., is purely a matter of convention, but so useful . . .

• Also in Appendix A is a complete list of instructions and pseudoinstructions. I

prefer that you not use the pseudoinstructions, with a few exceptions that are

hard to avoid, such as la.

• MIPS assembly language also provides for defining “macros”; more in section

A.2. (Some other assembly languages use this a lot.)

Slide 4

Memory Layout

• Again the hardware imposes no particular distinctions on how memory is

used, but useful to adopt conventions. The one described in the text is typical.

From smallest to largest addresses:

– A reserved block (usually for O/S use).

– A block for the program’s text segment (code).

– A block for the program’s data segment, divided into static data (globals,

etc.) and dynamic data (“the heap”). UNIX systems further subdivide this

into a segment for fixed data with values assigned at compile time and a

segment with space for other static data (not initialized) and dynamic data.

– Possibly unused space.

– A block for the stack segment.

• Notice that the data segment grows toward larger addresses, the stack

segment toward smaller addresses.

CSCI 2321 February 20, 2017

Slide 5

From Source to Execution — Linking

• As mentioned, object and executable files contain machine language and

other information.

• Details vary, but if you’re curious, a Web search on “ELF file format” should

find information on a format used in many UNIX-like systems.

Commands readelf, nm, and ldd are interesting to try with object and

executable files.

Slide 6

Textbook’s Example of Linking

• I think I misled you last time about “relocation information” — it should be

information about any instructions that might need to change during

linking/loading.

• Some details of this example are quite unclear to me, such as how they got

the reference to $gp from a lw or sw. Apparently SPIM at least will let you

use a label as the operand of a load/store, but it’s apparently treated as a

pseudoinstruction and uses $at to hold the address.

CSCI 2321 February 20, 2017

Slide 7

From Source to Execution — Loading

• Nice summary in Appendix A of what happens in loading. Operating system

must:

– Read executable file to determine sizes of text and data segments.

– “Create address space” big enough for text, data, and stack segments.

(Details vary by O/S.)

– Initialize text and data segments from executable file.

– Set up registers — stack pointer, global pointer, etc.

– Push any arguments to program onto stack.

– Jump to start-up code that copies arguments to registers and calls

program’s main(). On return, makes a system call to terminate

program.

• Note in passing that code invoked by “system calls” is not part of the program;

the syscall instruction jumps to code in the O/S’s part of memory.

Slide 8

Stack Usage Revisited

• We talked about how each call to a procedure pushes things (the return

address if nothing else) onto the stack.

• Might be useful to watch this happen in xspim, using the factorial example?

CSCI 2321 February 20, 2017

Slide 9

Sidebar(?): Parallel Execution and Synchronization

• A lot of commodity hardware these days features multiple processing units

(“cores”) sharing access to memory. One reason for this is that in theory we

can make individual applications faster by splitting computation up among

processing elements.

(Shameless self(?)-promotion: We plan to try again to offer the

parallel-programming elective in the fall.)

• Having processing elements share memory makes parallel programming

easier in some ways but has risks (“race conditions”). Avoiding the risks

requires some way to control access to shared variables (e.g., to implement

notion of “lock”).

Slide 10

Parallel Execution and Synchronization, Continued

• Most texts on operating systems discuss synchronization issues and present

several solutions (“synchronization mechanisms”), some rather high-level and

others not.

(Why is this in O/S textbooks? because O/Ss typically have to manage

“processes” executing concurrently, either truly at the same time or

interleaved.)

• The most primitive can (with some simplifying assumptions) be implemented

with no hardware support. But hardware support is very useful.

CSCI 2321 February 20, 2017

Slide 11

Sidebar: Why is Implementing a Lock Hard?

• It might seem like it would be straightforward to implement a lock — just have

an integer variable, with value 0 meaning “unlocked” and anything else

meaning “locked”. And then you “lock” by looping until the value is 0, then

setting to nonzero, and “unlock” by setting back to 0.

• But this doesn’t work! (Why not?)

Slide 12

Instructions for Synchronization

• Key goal in designing hardware support for synchronization is to provide

“atomic” (indivisible) load-and-store. This allows writing a low-level

implementation of “lock” idea.

• Many architectures do this with a single instruction (e.g., “test and set” or

“compare and swap”). Requires two accesses to memory so may be difficult

to implement efficiently.

• MIPS approach — same idea, but using a pair of instructions, ll (“load

linked”) and sc (“store conditional”). Example of use in textbook (p. 122). sc

“succeeds” only if value at target location has not changed since previous ll

— i.e., if one can regard the pair of instructions as forming a single atomic

load/store.

CSCI 2321 February 20, 2017

Slide 13

Preview — Data and Arithmetic

• Next chapter discusses how data is represented and arithmetic is done.

• Some material should be review — how integers and floating-point values are

represented in binary, integer addition and subtraction.

• Other material is new — some details of how multiplication and division can

be done, what floating-point arithmetic involves.

Slide 14

Minute Essay

• If you think about formats for object and executable files, would you think

they’d be the same for all operating systems running on the same

architecture? if so, why, and if not, what parts would be the same? what parts

might be different? (You may not feel like you can fully answer this, so —

speculate?)

• This wraps up what I plan to say about Chapter 2. Any questions before we

move on?

CSCI 2321 February 20, 2017

Slide 15

Minute Essay Answer

• A few things would likely be the same, or almost the same — the sizes of the

text and data segments, the actual machine instructions, and the data for the

data segment. But some things in the machine-code parts may be dependent

on what the linker does to resolve unresolved references, which might vary

depending on the O/S.

• But other things might not be, if for no other reason than that it’s not clear (to

me anyway) that there would be incentive to standardize across operating

systems. And anything related to how the O/S manages memory or

dynamically-linked library code would likely need to be different.

