
CSCI 2321 February 27, 2017

Slide 1

Administrivia

• Reminder: Quiz 3 Wednesday. Likely topics involve how numbers are

represented in binary and some consequences of that (as in the “floating

point is strange” examples). I might also ask you to do some simple base

conversions (decimal to binary/hexadecimal or vice versa).

• Reminder: Homework 3 programming problems due today at 11:59pm. If you

can’t quite finish by then, turn in what you have and then submit an improved

version as soon as you can.

• Homework 4 on the Web; due next Monday.

• Early reminder: Midterm next Wednesday. I’ll post a short review sheet by this

Wednesday.

Slide 2

Minute Essay From Last Lecture

• Many people had trouble with that last problem. I may have more to say after I

grade it.

• Several people said one problem or another was interesting or helpful in

understanding.

• Many people found at least some of this homework more difficult than the

previous one, but one person found it easier(!).

CSCI 2321 February 27, 2017

Slide 3

Integer Addition/Subtraction — Recap

• We talked about these operations last time.

• Textbook comments that slt could also be implemented using the same

logic — to check for a < b, compute a-b and check for negative result

(high-order bit on). Clever!(?)

Slide 4

Integer Addition/Subtraction — Signed Versus Unsigned

• You may know/remember that since integers are of fixed size, addition and

subtraction can “overflow”. (Textbook goes into some details.)

• Some higher-level languages (C for example) don’t require detecting such

overflow. Others (Ada?) do.

• Thus, MIPS, like many architectures, offers “signed” versions of arithmetic

operations, which check for overflow and raise a (hardware) exception if

found, and “unsigned” versions (e.g., addu), which don’t.

CSCI 2321 February 27, 2017

Slide 5

Integer Multiplication — Recap

• Simple algorithm based on same idea as multiplying in base 10. Details in

textbook. A little intimidating unless/until you work through an example.

• MIPS instruction set includes one multiply instruction mult with two

operands. Results go in pair of special-purpose registers; use mflo to

retrieve low-order 32 bits.

• Basic algorithm works for signed quantities as well, though you have to be a

bit careful. Details in textbook.

Slide 6

Division

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Review terminology: We divide “dividend” a by “divisor” b to

produce quotient q and remainder r, where a = bq + r and 0 ≤ |r| < b.)

Example?

We can do the same thing in base 2; this gives the algorithm shown in

textbook figures 3.8 through 3.10. (Work through example?)

(Here too we can do better — later maybe).

• What about signs? Simplest solution is (they say!) to perform division on

non-negative numbers and then fix up signs of the result if need be.

CSCI 2321 February 27, 2017

Slide 7

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder is kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient is in lo and remainder is in hi. Two (or more)

instructions needed to do a division and get the result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

Slide 8

Integer Multiplication and Division, Recap

• Algorithms for both operations are based on how you do things “by hand”,

with some modifications to permit simpler hardware. It’s not critical to

understand the details, but probably useful to work through an example to

believe that it works.

• Required hardware is something that can add two 32-bit numbers, a 64-bit

“work area”, something to do right and left shifts of the 64-bit area, and some

control logic.

• MIPS architecture uses “special registers” lo and hi for the 64-bit work

area. This is where the results end up. There are instructions to multiply, to

divide, and to move from the special registers. (“Move from” explains the

names of the instructions.)

CSCI 2321 February 27, 2017

Slide 9

Floating-Point Revisited

• We talked somewhat generally about floating-point formats. May be useful to

work through an example or two to see how this works.

• Arithmetic on floating-point values is, no surprise, a bit complicated. Textbook

shows algorithms (in flowchart form). Probably useful to skim.

Slide 10

Floating Point in MIPS Architecture

• Architecture defines 32 floating-point registers ($f0 through $f31), used

singly for single-precision, in pairs for double-precision.

• Instruction set includes:

– Arithmetic instructions:

add.s, sub.s, mul.s, div.s; add.d, sub.d, mul.d, div.d

– Load/store instructions (single-precision):

lwc1; swc1

– Comparisons:

c.eq.s, c.lt.s, etc.; c.eq.d, c.lt.d, etc.

These set a bit true/false, which can be used by bc1t, bc1f.

CSCI 2321 February 27, 2017

Slide 11

Minute Essay

• That’s it for Chapter 3. Questions?

• Anything noteworthy about the programming problems for Homework 3? For

most of you this was probably your first try at producing complete-for-SPIM

MIPS programs; was it interesting, tedious, educational, . . . ?

