
CSCI 2321 March 29, 2017

Slide 1

Administrivia

• Reminder: Homework 5 due today.

(Show LATEX examples?)

• Homework 6 on the Web. Due in a week (or possibly the following Monday —

we can revisit this next time).

Slide 2

Minute Essay From Last Lecture

• I didn’t tally responses exactly, but at least a plurality said the workload

seemed about right, with a few saying it seemed less than typical for a

3-credit course and more saying they thought they spent more than the

expected/intended amount of time.



CSCI 2321 March 29, 2017

Slide 3

Designing a Processor — Recap

• The goal is to sketch out an implementation of a small but (we hope)

representative selection of MIPS instructions, consisting of three groups:

– Memory-access instructions (lw, sw).

– Arithmetic/logical instructions (add, sub, and, or, slt). (Sidebar:

Should we review additions to the ALU for slt? Figures B.5.10

and B.5.11?)

– Control-flow instructions (beq, j).

• Implementation is in terms of combinational logic blocks and state elements,

all ultimately constructed from AND and OR gates and inverters. Notice

however the frequent use of layers of abstraction.

• To make it possible for state elements to be changed in some controlled way,

we use “clocking”.

Slide 4

Clocking — Recap/Review

• Hardware will include something that implements a “clock cycle”.

• State elements’ inputs are “sampled” during one phase of this cycle, and

outputs can change during another phase.

• Length of cycle determines how complicated the various logic blocks can be

(or vice versa).



CSCI 2321 March 29, 2017

Slide 5

Some Components We Want

• A register file.

• Some memory (which for simplicity we’ll separate into instruction memory and

data memory).

• Some way of representing where to find the “next” instruction — a “special

purpose” register typically called “program counter” (PC).

• One or more ALUs (why more than one? should become obvious soon).

• “Control logic”. (More soon.)

• Figures 4.1 and 4.2 sketch overall plan. How does Figure 4.1 relate to what

we need to do . . .

Slide 6

Fetching Instructions and Updating PC

• For all instructions, start by getting instruction from memory. (What do we

need? How does this map to Figure 4.1?)

• For most instructions, at some point we need to increment PC. (What do we

need? How does this map to the figure?)

• And then the three groups of instructions do different things, but there are

some commonalities . . .



CSCI 2321 March 29, 2017

Slide 7

Memory-Access Instructions

• Instruction includes two registers (one for base address, one for where to load

into / store from) and a 16-bit displacement.

• Needed computation:

– Add displacement to register containing address.

– Use result to access memory, loading/storing to/from register containing

data.

• How does this map to Figure 4.1? (Also see Figure 4.19.)

Slide 8

Arithmetic/Logic Instructions

• Instruction includes three registers (two for input operands, one for result).

• Needed computation:

– Perform operation (with ALU) using values from two registers as inputs.

– Save result in target register.

• How does this map to Figure 4.1? (Also see Figure 4.20.)



CSCI 2321 March 29, 2017

Slide 9

Control-Flow Instructions (beq)

• (j later.)

• Instruction includes two registers (data to compare) and a 16-bit displacement

used to find target of branch.

• Needed computation:

– Compare contents of two registers.

– Compute address of branch target (PC plus displacement).

– Use result of comparison to choose value for next PC.

• How does this map to Figure 4.1? (Also see Figure 4.21.)

Slide 10

Overview Revisited

• Notice that Figure 4.1 seems to have ways to do everything we need to do —

paths for data to flow from one place to another, including into ALU(s) for

computation.

• Notice also that for every instruction we’re in some sense doing the same

things (have each ALU compute something), but some results are essentially

discarded. (Example — beq computes two “next instruction” addresses, but

only saves one of them.) This is very typical of how things work at this level.



CSCI 2321 March 29, 2017

Slide 11

The “Datapath” — What’s Missing

• Inputs to some blocks (e.g. PC) can come from more than one source. That

can’t work. So we need multiplexors to control which is used.

• Inputs to ALU / adder are 32 bits, but for some instructions we want to get one

of them from 16 bits in insturuction. So we need something to extend that to

32 bits by extending sign.

• Both control-flow instructions include something that needs to be shifted two

bits before being used to compute a target address, so we need to support

that.

• Add these to “datapath” part of Figure 4.1 to get Figure 4.11. Leaves out

“control” part, substituting not-connected-yet control inputs (blue in figures.)

• Right now we’re showing the whole instruction as input to all elements that

need part of it; we’ll refine this later.

Slide 12

Control Logic

• So we have a “datapath” that can do things, but there are some inputs that

aren’t connected to anything. An analogy — the datapath is a puppet, and

these inputs are its strings.

• Who/what pulls the strings? the “control logic” — combinational logic whose

input is the current instruction plus any other needed information and whose

output is those disconnected inputs to datapath.

• As mentioned in Appendix B, tools exist to transform truth tables into

combinational logic, so our job is to come up with ones that will generate the

signals we need for the datapath.

• Section 4.4 works through details. A lot of it should seem like common sense

(viewed from the right angle?). Only potentially tricky part is input to ALU

“which operation?” . . .



CSCI 2321 March 29, 2017

Slide 13

ALU Control Input

• ALU as designed in Appendix B uses 4 bits to represent which operation is to

be done (2-bit input to multiplexor plus 2 “inverted input” signals). Seems like

it would be simple enough for the main control unit to generate these directly,

no?

• However, turns out to be even simpler to split functionality into two parts —

generate a 2-bit “ALU operation” from just the opcode field, and then use that

plus (for some instructions) the function field to tell the ALU what to do.

Slide 14

Instruction Execution Details

• Section 4.4 gives some details of what happens for each kind of instruction in

the subset (initially omitting jumps). What we need to add for jumps — end of

section.

• We won’t discuss more in class, but you should read carefully — not to

memorize, but to understand. May be useful to try to write down, for an

example instruction, inputs to all the combinational logic blocks and state

elements — as Homework 6 asks you to do. (Examples as time permits.)



CSCI 2321 March 29, 2017

Slide 15

Minute Essay

• None — quiz.


