
CSCI 2321 April 3, 2017

Slide 1

Administrivia

• Reminder: If you’re going to turn something in for Homework X1, please do

so today, or Wednesday at the latest.

• Homework 6 due date moved to next Monday (two requests already for

extensions).

• Quiz 5 scheduled for a week from today. More about topics next time.

• (A few comments about Quiz 4.)

Slide 2

Designing a Processor — Review/Recap

• So we’ve sketched the design of a processor that implements a supposedly

representative set of instructions.

• A few more things to fill in . . .



CSCI 2321 April 3, 2017

Slide 3

Why Separate Instruction Memory and Data Memory?

• Design shows instruction and data memory separate.

• Why? isn’t it all just ones and zeros? Yes, but . . . (Think about it a minute.)

Slide 4

Why Separate Instruction Memory and Data Memory?

Continued

• Think about what has to happen on a lw. (Is this possible with a single

memory?)

• (This is one of the textbook’s “check yourself” questions.)



CSCI 2321 April 3, 2017

Slide 5

Implementing Jumps

• Discussion so far has omitted the j instruction. How should that work?

• We need to be able to get 26 bits from the instruction, shift them 2 bits left,

combine with high-order bits of the current PC, and use that as the new PC.

Figure 4.24 shows how.

Slide 6

Multi-Cycle Implementations

• So, we have a sketch for an implementation that executes one instruction per

cycle. But clearly this isn’t how all real systems work (if nothing else, many

don’t separate instruction memory from data memory).

• Why not? means cycle time is limited by length of longest path through the

whole path, while many instructions can be done faster.

• What to do? break up work into multiple pieces . . .



CSCI 2321 April 3, 2017

Slide 7

Instruction Phases

• Work involved in fetching and executing a MIPS instruction can be split into

phases:

– Fetch instruction.

– Read register operands and (at the same time) decode instruction. “At the

same time” because of instruction format(s).

– Do operation or address calculation.

– Access data memory.

– Write register result.

• How does this help? Two possibilities . . .

Slide 8

Simple Multi-Cycle Implementation

• One approach is to stick to the idea of executing one instruction at a time, but

break things up so instructions potentially take multiple cycles. (How’s that

going to help? Well . . . )

• Control logic is now going to be more complex — must do everything we were

doing before, plus keep track of which phase we’re in. (Recall discussion of

finite state machines from Appendix B.)

• However, one potential payoff is skipping unused phases — e.g.., the

R-format (arithmetic/logic) instructions don’t need to access data memory,

and indeed we don’t need separate instruction/data memories. A previous

edition of the textbook lays out a design for this (review figures briefly).



CSCI 2321 April 3, 2017

Slide 9

Pipelined Implementation

• Another approach is to use “pipelining”: Modeled after assembly line; many

real-world analogies possible. Textbook describes a laundry “assembly line”,

with stages corresponding to washing, drying, folding, and putting away.

• Could base a pipelined implementation of MIPS on the same phases used for

a multi-cycle implementation, with one pipeline stage per phase.

• How does this help? well, it doesn’t make individual instructions faster, but it

means you can get more of them done in a given time.

• Like the simple multi-cycle implementation, it means added hardware

complexity . . .

Slide 10

Pipelining — Implementation Overview

• First might observe that the five phases into which we’ve divided instruction

processing seem to map onto the picture of our datapath — what we’re doing

is breaking up the flow of information through it into steps(!).

• So the idea will be to somehow partition the datapath so we can have each

piece working on a different instruction. But for that to work, we have to add

groups of registers between pieces, so we save the results of one step for the

next step.

• Ignoring complications (“hazards” — next slides), this gives what’s sketched

in Figures 4.33 and 4.35.



CSCI 2321 April 3, 2017

Slide 11

Pipelining — “Hazards”

• Another potential downside to pipelining (in addition to increased complexity)

is that we have to worry about “hazards” — ways in which one instruction

might interfere with another.

• Several ways in which things could go wrong . . .

Slide 12

Pipelining Complications — “Structural Hazards”

• Idea is that two things we want to do at the same time conflict — e.g., read

instruction from memory and read data from memory.

• Only solution is to avoid. For MIPS, we could go back to separate instruction

and data memories.



CSCI 2321 April 3, 2017

Slide 13

Pipelining Complications — “Control Hazards”

• Idea is that we need to make a decision but can’t yet — e.g., we can’t know

what instruction should logically follow a conditional branch until we have the

branch partly executed.

• Several possible solutions:

– Stall — just wait until we can be sure.

– Predict — make a guess, and if we guess wrong undo/redo.

– Use delayed branches — always execute instruction after conditional

branch, then jump / don’t jump. (This is what MIPS does — meaning that

the assembler programs we’ve written don’t really represent how things

work.)

Slide 14

Pipelining Complications — “Data Hazards”

• Idea is that we need data computed by one instruction before it would

normally be available — e.g., two successive R-type instructions, or a load

followed by an R-type instruction.

• Several possible solutions:

– Stall — just wait until data is available. (Probably not a good solution.)

– Add hardware for “forwarding” — special hardware to route results to next

instruction in addition to regular destination. May or may not be possible.

– Use delayed loads — don’t allow instruction after a “load” to use the result.

(This is what original MIPS did.)



CSCI 2321 April 3, 2017

Slide 15

Minute Essay

• One performance advantage of a non-pipelined multi-cycle MIPS

implementation is that not all instructions need all phases. Is this true for a

pipelined implementation too? (Question based on another “check yourself”.)

• Another advantage of a non-pipelined multi-cycle MIPS implementation is that

it does not require separate instruction and data memories. Is this true for a

pipelined implementation too? (Question based on another “check yourself”.)

• Anything noteworthy to report about Homework 5 (the one about circuits and

state machines)?

Slide 16

Minute Essay Answer

• It’s still true that not all instructions need all phases (e.g., j needs only to be

fetched and decoded), but this doesn’t improve performance because of how

pipelining works — it just means that not all steps/phases of the pipeline are

in use on every cycle.

• No; since the pipelined implementation has to fetch an instruction on every

cycle, it can’t also be reading/writing memory unless instruction and data

memories are separate.


