
CSCI 2321 January 22, 2018

Slide 1

Administrivia

• Homework 1 on the Web. Due next Monday, at 5pm.

• Notes from previous lecture updated to include example worked in class.

Slide 2

Minute Essay From Last Lecture

• (Review question, my answer.)

• (Many people got the basic idea, which is that you don’t have enough

information to say.)

CSCI 2321 January 22, 2018

Slide 3

Measuring Performance — Recap/Review

• Many, many factors influence execution time for programs, from choice of

algorithm to “processor speed” to system load, as discussed previously.

• Textbook chooses to focus in this chapter on “execution time” by which the

authors mean processor time only, excluding delays caused by other factors.

Might not be meaningful for comparing systems but seems like reasonable

way to compare processors at least.

• (Parallelism — in 1/17 slides, starting with “Parallelism (Hardware)”.)

Slide 4

“Architecture” as Interface Definition

• “Architecture” here means “instruction set architecture” (ISA), a key

abstraction.

• From software perspective, “architecture” defines lowest-level building blocks

— what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification — designers

must build something that behaves the way the specification says.

CSCI 2321 January 22, 2018

Slide 5

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program —

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point).

Slide 6

Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.

• (Yes, these can sometimes be opposing forces!)

CSCI 2321 January 22, 2018

Slide 7

Why Study MIPS Architecture?

• Goal is not to become assembly-language programmers, but to understand

how things work at this level. Once you understand basic principles, learning

another assembly language is easier.

• MIPS architecture is simple but representative.

Aside: SPIM simulator will let you experiment (commands spim and

xspim).

Slide 8

A Bit About Assembly Language Syntax

• Syntax for high-level languages can be complex. Allows for good expressivity,

but translation into processor instructions is complicated.

• Syntax for assembly language, in contrast, is very simple. Less expressivity

but much easier to translate into (binary form of) instructions.

CSCI 2321 January 22, 2018

Slide 9

Arithmetic Instructions — Addition

• Instruction for integer addition (in assembly-language form):

add a, b, c

Adds b and c giving a.

(Notice the format — symbolic name, operands.)

• Is this expressive enough?

• Should we have more instructions (with different numbers of operands, e.g.)?

Basic principle: “Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic

instructions have exactly three operands.

• sub (subtraction) is similar. Multiplication and division are more complicated,

so punt for now.

• What are the operands? Registers. What are those? Well . . .

Slide 10

Registers

• Access to main memory is slow compared to processor speed, so it’s useful

to have a within-the-chip memory — “registers”.

• MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

• Would more be better?

Basic principle: “Smaller is faster.”

• In machine language, reference by number.

• In assembly language, useful to adopt conventions for which registers to use

for what, use symbolic names indicating usage.

E.g., use registers 8 through 15 for “temporary” values (short-term), refer to

as $t0 through $t7.

CSCI 2321 January 22, 2018

Slide 11

High-Level Languages Versus Assembly Language

• In a high-level language you work with “variables” — conceptually, names for

memory locations. You can do arithmetic on them, copy them, etc.

• In machine/assembly language, what you can do may be more restricted —

e.g., in MIPS architecture, you must load data into a register before doing

arithmetic.

• The compiler’s job is to translate from the somewhat abstract HLL view to

machine language. To do this, normally associate variables with registers —

load data from memory into registers, calculate, store it back. A “good”

compiler tries to minimize loads/stores.

Slide 12

Example

• Suppose we have this in C

f = (g + h) - (i + j)

• What instructions should compiler produce? Assume we’re using $s0 for f,

$s1 for g, $s2 for h, $s3 for i, $s4 for j.

(Symbolic register names starting $s are used for for slightly longer-term

storage than the ones starting $t.)

(Where do values come from? Next topic . . .)

CSCI 2321 January 22, 2018

Slide 13

Memory, Revisited

• Usually we think of memory as big 1D array of 8-bit “bytes”, each with

address (index into array) and contents (value of array element).

• Often we operate on elements in groups of 4 — 32-bit “word”.

• MIPS is a “load/store” architecture, meaning access to memory is limited to

copying data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

Slide 14

Memory-Access Instructions — Load

• Goal is to get one 32-bit word from memory and put in a register.

• How to specify location in memory? Seems most useful to have address in a

register. For a little more flexibility, specify address in terms of “base” and

“displacement”.

lw r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

• sw (“store word”) instruction is similar.

CSCI 2321 January 22, 2018

Slide 15

Example

• Suppose we have this in C

g = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h, $s1 for g.

Slide 16

Addition Using Constant

• “Add immediate”

addi r1, r2, c

adds constant c (16-bit signed integer, can be negative) to contents of r2,

puts result in r1.

• Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

CSCI 2321 January 22, 2018

Slide 17

Representing (Integer) Data in Binary

• Remember that to the hardware “it’s all ones and zero” — any data you’re

working with.

• As an example — representation of signed integers using two’s complement

notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you

don’t remember.

Slide 18

A Little About the Simulator

• As mentioned, installed on our machines is a simulator you can use to try

your programs. It simulates a MIPS processor running a very primitive

operating system (just enough to load programs and do some simple console

I/O). It assembles programs on the fly.

• Your code goes in a file with extension .s. (Sample starter code on “Sample

programs” page. Contains many things we haven’t talked about yet but could

still be useful for trying things out.)

• Start it with command xspim (spim for command-line version).

(Short demo.)

CSCI 2321 January 22, 2018

Slide 19

Minute Essay

• Write MIPS assembly code for the following C program fragment:

a = b + c + d + e

Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0

Optional: Can you think of more than one way to do it? If you can, does one

seem better than the other, and why?

OR

• Write MIPS assembler code to exchange the values of a[0] and a[1].

Assume register $s0 contains the address of a (start of the array), and a is

an array of integers.

• If you haven’t filled in Dr. Lewis’s survey for next semester’s classes, please

do so now.

Slide 20

Minute Essay Answer

• One way:

add $s0, $s1, $s2

add $s0, $s0, $s3

add $s0, $s0, $s4

Another way (not as good since uses more registers?):

add $t0, $s1, $s2

add $t1, $s3, $s4

add $s0, $t0, $t1

• One way:

lw $t0, 0($s0)

lw $t1, 4($s0)

sw $t0, 4($s0)

sw $t1, 0($s0)

