CSCT 2321 January 22, 2018

Administrivia

e Homework 1 on the Web. Due next Monday, at 5pm.

e Notes from previous lecture updated to include example worked in class.

Slide 1
Minute Essay From Last Lecture
o (Review question, my answer.)
e (Many people got the basic idea, which is that you don’t have enough
information to say.)
Slide 2

CSCT 2321 January 22, 2018

4)

Measuring Performance — Recap/Review

o Many, many factors influence execution time for programs, from choice of

algorithm to “processor speed” to system load, as discussed previously.

e Textbook chooses to focus in this chapter on “execution time” by which the

authors mean processor time only, excluding delays caused by other factors.
Slide 3 Might not be meaningful for comparing systems but seems like reasonable
way to compare processors at least.

e (Parallelism — in 1/17 slides, starting with “Parallelism (Hardware)”.)

“Architecture” as Interface Definition

e “Architecture” here means “instruction set architecture” (ISA), a key
abstraction.

e From software perspective, “architecture” defines lowest-level building blocks

— what operations are possible, what kinds of operands, binary data formats,

Slide 4 etc.

e From hardware perspective, “architecture” is a specification — designers
must build something that behaves the way the specification says.

CSCT 2321 January 22, 2018

Architecture — Key Abstractions

o Memory: Long long list of binary “numbers”, encoding all data (including
programs), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

e Instructions: Primitive operations processor can perform.

Slide 5 e Fetch/execute cycle: What the processor does to execute a program —

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

e Registers: Fast-access work space for processor, typically divided into
“special-purpose” (e.g., program counter), “general-purpose” (integer and
floating-point).

Design Goals for Instruction Set

e From software perspective — expressivity.
e From hardware perspective — good performance, low cost.

o (Yes, these can sometimes be opposing forces!)

Slide 6

CSCT 2321 January 22, 2018

Why Study MIPS Architecture?

e Goal is not to become assembly-language programmers, but to understand
how things work at this level. Once you understand basic principles, learning
another assembly language is easier.

o MIPS architecture is simple but representative.

Slide 7 Aside: SPIM simulator will let you experiment (commands spim and

xspim).

(
A Bit About Assembly Language Syntax)

e Syntax for high-level languages can be complex. Allows for good expressivity,
but translation into processor instructions is complicated.

e Syntax for assembly language, in contrast, is very simple. Less expressivity
but much easier to translate into (binary form of) instructions.

Slide 8

CSCT 2321 January 22, 2018

Arithmetic Instructions — Addition

e |Instruction for integer addition (in assembly-language form):
add a, b, c
Adds b and c giving a.
(Notice the format — symbolic name, operands.)
Slide 9 ® |[s this expressive enough?
e Should we have more instructions (with different numbers of operands, e.g.)?
Basic principle: “Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic
instructions have exactly three operands.

e sub (subtraction) is similar. Multiplication and division are more complicated,

S0 punt for now.

o What are the operands? Registers. What are those? Well ...

. J

Registers

® Access to main memory is slow compared to processor speed, so it's useful
to have a within-the-chip memory — “registers”.

e MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

o Would more be better?

Slide 10 Basic principle: “Smaller is faster”

e In machine language, reference by number.

e In assembly language, useful to adopt conventions for which registers to use
for what, use symbolic names indicating usage.
E.g., use registers 8 through 15 for “temporary” values (short-term), refer to
as $t 0 through St 7.

CSCT 2321 January 22, 2018

High-Level Languages Versus Assembly Language

e In a high-level language you work with “variables” — conceptually, names for
memory locations. You can do arithmetic on them, copy them, etc.

e In machine/assembly language, what you can do may be more restricted —
e.g., in MIPS architecture, you must load data into a register before doing
Slide 11 arithmetic.

e The compiler’s job is to translate from the somewhat abstract HLL view to
machine language. To do this, normally associate variables with registers —
load data from memory into registers, calculate, store it back. A “good”
compiler tries to minimize loads/stores.

Example

® Suppose we have thisin C
f=+(+h - (1 + 7
e What instructions should compiler produce? Assume we're using $s0 for £,
$slforg, $s2forh, $s3for i, $s4 for j.

Slide 12 (Symbolic register names starting $ s are used for for slightly longer-term
storage than the ones starting $t.)

(Where do values come from? Next topic .. .)

CSCT 2321 January 22, 2018

Memory, Revisited

e Usually we think of memory as big 1D array of 8-bit “bytes”, each with
address (index into array) and contents (value of array element).

e Often we operate on elements in groups of 4 — 32-bit “word”.

o MIPS is a “load/store” architecture, meaning access to memory is limited to
Slide 13 copying data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

Memory-Access Instructions — Load

e Goal is to get one 32-bit word from memory and put in a register.

e How to specify location in memory? Seems most useful to have address in a
register. For a little more flexibility, specify address in terms of “base” and
“displacement”.

Slide 14 1w r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

e sw (“store word”) instruction is similar.

CSCT 2321 January 22, 2018

Example

® Suppose we have thisin C
g =h + afl8];

e What instructions should compiler produce? Assume we're using $s3 for
starting (“base”) address of a, $s2 for h, $s1 for g.

Slide 15
Addition Using Constant
e “Add immediate”
addi rl, r2, c
adds constant ¢ (16-bit signed integer, can be negative) to contents of r2,
puts resultin r1.
Slide 16 e Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

CSCT 2321 January 22, 2018

Representing (Integer) Data in Binary

o Remember that to the hardware “it’s all ones and zero” — any data you're

working with.

e As an example — representation of signed integers using two’s complement
notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you
Slide 17 don’t remember.

A Little About the Simulator

e As mentioned, installed on our machines is a simulator you can use to try
your programs. It simulates a MIPS processor running a very primitive
operating system (just enough to load programs and do some simple console
I/0). It assembles programs on the fly.

Slide 18 e Your code goes in a file with extension . s. (Sample starter code on “Sample
programs” page. Contains many things we haven't talked about yet but could
still be useful for trying things out.)

e Start it with command xspim (spim for command-line version).

(Short demo.)

CSCT 2321

Slide 19

Slide 20

January 22, 2018

o Write MIPS assembly code for the following C program fragment:
a=b+c+d+ e
Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0

Optional: Can you think of more than one way to do it? If you can, does one
seem better than the other, and why?

OR
o Write MIPS assembler code to exchange the valuesof a[0] anda[1].

Assume register $s0 contains the address of a (start of the array), and a is
an array of integers.

e |f you haven't filled in Dr. Lewis’s survey for next semester’s classes, please

do so now.

J

-

e One way:
add $s0, $sl1, $s2
add $s0, $s0, $s3
add $s0, $s0, S$s4
Another way (not as good since uses more registers?):
add $t0, $sl1, $s2
add $tl, $s3, $s4
add $s0, s$t0, $t1l

e One way:
1w $t0, 0($s0)
1w $tl, 4($s0)
sw $t0, 4($s0)
sSw $tl, 0($s0)

