
CSCI 2321 January 24, 2018

Slide 1

Administrivia

• Reminder: Homework 1 due Monday. Hard copy please, in class or in one of

my mailboxes (outside my office or in the ASO).

• Quiz 1 Wednesday. Topics from chapter 1.

Quizzes will be about 10 minutes, at the end of class. Open book / notes

(meaning you can consult the textbook, anything on the course Web site, or

your notes, and you can use whatever tools you need to do that, but no

others.) Problems will likely be similar to homeworks and/or minute essays.

• Code shown in simulator last time on “sample programs” page.

• If you wonder about the fact that the e-mail address TMail shows for me isn’t

the same as the one I give in my course materials — it’s a long story, but you

can use either one.

Slide 2

Minute Essay From Last Lecture

• (Most people who tried it came pretty close.)

• (By the way: All minute-essay answers get the same credit, so don’t worry if

you don’t have the right answer, at least from a grade standpoint.)

CSCI 2321 January 24, 2018

Slide 3

MIPS Instructions — Recap/Review

• We looked at a few instructions — add (and sub), addi, lw, sw. Syntax

highly constrained, unlike high-level languages.

• Many operands are register numbers. Maybe think of (general-purpose)

registers as a fixed-size array of 32-bit values, and register number is index

into this array. Assembler also allows using symbolic names ($t0, e.g.). (List

of values in MIPS reference — green card in front of paper version of

textbook, link to online version on “Useful links”.) Notice that register 0

($zero) is special — value always zero.

Slide 4

Registers and Variables

• Examples in textbook and in class talk about registers being associated with

variables.

• The idea is more or less this: In MIPS, can only do arithmetic on values in

registers. So if compiling from a high-level language, to do arithmetic on

variables, have to first load values into registers, then do arithmetic, then store

the results back.

• Repeated loads/stores can be inefficient, though, so “good” compilers

typically try to associate a register with each variable and do loads/stores only

when necessary. (If more variables than registers? then use registers for

most-frequently-used variables, do more loads/stores.)

CSCI 2321 January 24, 2018

Slide 5

Arithmetic Instructions — Review

• add and sub take three operands, all register numbers.

• addi also takes three operands, two register numbers and a constant

(“immediate value”). Curiously enough(?), no subi. (Why not? What could

you use instead?)

Slide 6

Load/Store Instructions — Review

• Load and store instructions take two operands, one a register to load into /

store from, and one specifying address in terms of register containing base

address and displacement (constant).

• Fixed displacement isn’t maybe ideal for all situations (e.g., array element),

but simple, and displacement useful for addressing element of, say, a C

struct.

• (How then to address array element? compute address by computing

displacement and adding to base address. Example on next slide.)

CSCI 2321 January 24, 2018

Slide 7

Example — Array Element Access

• Suppose register $s1 contains the address of an array A of 32-bit integers,

and register $s2 contains the value of a variable i. We could use the

following to load the value of A[i] into register $t0 (keeping in mind that

addresses are in bytes, and each array element occupies 4 bytes):

add $t0, $s2, $s2 # $t0 <- 2*i

add $t0, $t0, $t0 # $t0 <- 4*i

add $t1, $t0, $s1 # $t1 <- &A[i]

lw $t0, 0($t1)

• (Isn’t there a multiply instruction we could use instead of this cumbersome

double addition?? yes, but it’s likely to be quite slow.)

Slide 8

MIPS Assembly Language Program Structure

• Review (updated) example from last time.

• Overall structure mixes instructions and “directives” (things that start with .).

Programs typically have two sections, one for code (starting with .text

directive) and one for data (starting with .data.

• For now, ignore “opening linkage” and “closing linkage”. Most of the rest

should seem at least sort of plausible?

CSCI 2321 January 24, 2018

Slide 9

Simulator, Revisited

• xspim starts graphical version; most-often used buttons are probably “load”

and “step”.

• spim starts command-line version; commands include load, p to print, s

to step.

• Most of the code being executed should look pretty much like your code —

except

– Before your code there’s a tiny bit of SPIM’s rudimentary O/S, which jumps

to (your) main.

– Some assembly “instructions” (e.g., la) are actually “pseudo-instructions”

that assemble to more than one machine instruction.

Slide 10

Representing Instructions in Binary

• “It’s all ones and zeros” applies not only to data but also to programs —

“stored program” idea. (Some very early computers didn’t work that way —

programming was by rewiring(!).)

• So we need a way to represent instructions in binary . . .

CSCI 2321 January 24, 2018

Slide 11

Representing Instructions in Binary, Continued

• First consider what we have to represent:

– For all instructions, which instruction it is.

– For add and sub, three operands (all register numbers).

– For lw and sw, three operands (two register numbers and a

“displacement”).

– And so forth . . .

• So, each instruction will have “fields” — consistent format for storing pieces of

data, a little like a C struct.

Slide 12

Representing Instructions in Binary, Continued

• So, can we use the same format for all instructions? Some data (“which

instruction”) is common to all, but operands may need to be different.

• Can we / should we make all instructions the same length? For MIPS, yes

(other architectures differ), and then define different ways of dividing up the

length — “formats”.

Basic principle: “Good design involves good compromises.”

CSCI 2321 January 24, 2018

Slide 13

I Format

• Meant for instructions such as lw, sw.

• Fields:

– op — opcode, 6 bits

– rs — source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

Slide 14

I Format — Example

• Find binary representation of

lw $t0, 12($t1)

• Fields:

– op — look up lw in MIPS reference (green card in textbook or online),

result 0x23

– rs — look up $t1, result 9

– rt — 8

– disp — convert 12 to 16-bit value (0x000c).

• Convert all of the above to binary and concatenate. Use the simulator to

check.

CSCI 2321 January 24, 2018

Slide 15

R Format

• Meant for instructions such as add, sub.

• Fields:

– op — opcode, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for all instructions)

– funct — “function field”, 6 bits (not used for all instructions

• Somewhat unusual in that opcode doesn’t completely determine which

instruction it is; instead, what’s unique is the combination of opcode and

function field.

Slide 16

R Format — Example

• Find binary representation of

add $t0, $s1, $s2

• Fields:

– op — 0

– rs — 17 (from reference)

– rt — 18

– rd — 8

– shamt — 0 (not used)

– funct — 0x20 (from reference)

• Convert all of the above to binary and concatenate. Use the simulator to

check.

CSCI 2321 January 24, 2018

Slide 17

Interpreting Machine-Language Instructions

• So that’s how to get machine language from assembly language. How to go

the other way?

• At first might seem tricky — which format is being used? but all have 6-bit

opcode first, and it determines format for the rest.

Slide 18

Logical Operations

• Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

• Thus, MIPS instruction set provides “logical operations”. Hard to say whether

these exist to support C bit-manipulation operations, or C bit-manipulation

operations exist because most ISAs provide such instructions!

CSCI 2321 January 24, 2018

Slide 19

Bitwise And and Or

• C & is translated into and or andi. C | is translated into or or ori.

Format/operands are analogous to add and addi.

(Notice/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

• We could use these to test/set particular bits.

Slide 20

Other Logical Operations

• “Exclusive or” implements . . . what the name suggests (see textbook).

• “Nor” likewise. Can be used to implement “not” (see textbook).

CSCI 2321 January 24, 2018

Slide 21

“Shift” Instructions

• C << and >> (on unsigned numbers) are translated into sll (“shift left

logical”) and srl (“shift right logical”).

• sll and srl do what the names imply — bits “fall off” one side, and we add

zeros at the other side. These are R-format instructions, and they use that

“shift amount” field.

• When shifting left, filling with zeros makes sense. But when shifting right, we

might want to extend the sign bit instead. sra (“shift right arithmetic”) does

that.

• These instructions are very useful for multiplying and dividing by small powers

of 2, important since multiplication and division are likely to be slow (more

later in the course).

Slide 22

Flow of Control

• So far we know how to do (some) arithmetic, move data into and out of

memory. What about if/then/else, loops? (See sidebar on p. 90 for early

commentary on conditional execution.)

• We need instructions that allow us to “make a decision”. Perhaps surprisingly,

MIPS provides only two: beq (“branch if equal”), bne (“branch if not equal”).

• Illustrate with an example . . .

CSCI 2321 January 24, 2018

Slide 23

Flow of Control Example

• Suppose we have this in C (and as usual all variables are 32-bit integers)

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

• What instructions should compiler produce? Assume we’re using $s0

through $s4 for f, g, h, i, j.

• (For now, punt on how to represent L1.)

Slide 24

Flow of Control Example, Continued

• Compiling

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

using $s0 through $s4 for f, g, h, i, j.

gives

beq $s3, $s4, L1

add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

CSCI 2321 January 24, 2018

Slide 25

Another Flow of Control Example

• Of course, we don’t usually have go to in C. More likely is this:

if (i == j)

f = g + h

else

f = g - h

• What to do with this? Rewrite using go to . . .

Slide 26

Another Flow of Control Example

• Rewriting

if (i == j)

f = g + h

else

f = g - h

gives

if (i != j) goto Else:

f = g + h

goto End:

Else: f = g - h

End:

and then we can continue as before (punt for now on how to do unconditional

goto).

CSCI 2321 January 24, 2018

Slide 27

Loops

• Do we have enough to do (some kinds of) loops? Yes — example:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

(This time we’ll use sll rather than two adds to multiply i by 4.)

Slide 28

Loops — Example Continued

• Result

Loop: sll $t1, $s3, 2 # $t1 <- 4*i

add $t1, $t1, $s5 # $t1 <- address of A[i]

lw $t0, 0($t1) # $t0 <- A[i]

add $s1, $s1, $t0 # g = h + A[i]

add $s3, $s3, $s4 # i = i + j

bne $s3, $s2, Loop # if (i!=j) goto Loop

CSCI 2321 January 24, 2018

Slide 29

More Flow of Control (Preview)

• We can do if/then/else and loops, but only if condition being tested is equals /

not equals.

• So, we need instructions that will allow less-than comparisons.

• (We also need something that allows an unconditional branch, but we may

punt on that for a while too.)

Slide 30

Minute Essay

• Does one of the two instruction formats (I and R) seem like it would work for

addi? If so, which one, and can you say anything about what the values of

the various fields might be? If not, what fields would you need in a new

format?

• Anything particularly unclear?

CSCI 2321 January 24, 2018

Slide 31

Minute Essay Answer

• I format works — the operands of addi are two register numbers and a

16-bit constant value, same as lw and sw. Like those two instructions, it has

“source” and “destination” registers, which can go in those two fields, and a

16-bit immediate valuel that can go in the field used for displacement in the

load/store instructions.

