
CSCI 2321 January 29, 2018

Slide 1

Administrivia

• Reminder: Homework 1 due today. Hardcopy please. Now or in my mailbox

by 5pm.

• Reminder: Quiz 1 Wednesday. Topics from chapter 1.

• Next homework on the Web; due in a week.

• For minute essays, you can use them as a way to ask me pretty much

anything — questions about the course, random-curiosity questions about

something related to CS — and I’ll do my best to answer.

Slide 2

Minute Essay From Last Lecture

• (Review — but most people got it right.)

CSCI 2321 January 29, 2018

Slide 3

Conditional Execution — Recap/Review

• MIPS instruction set includes only two instructions to support conditional

execution: beq and bne.

• There’s also an unconditional “go to”, j (for “jump”).

• Together these are enough for some kinds of if/then/else and loops.

• If hand-compiling from C, useful to first translate into code with only goto for

out-of-sequence execution, and from there to MIPS.

• Example:

while (A[i] == k) {

i = i + j;

}

Slide 4

More Flow of Control

• With what we have now we can do if/then/else and loops, but only if condition

being tested is equals / not equals.

• So, we need instructions such as blt, ble, right?

• But those are apparently difficult to implement well; instead MIPS has “set on

less than”:

slt r1, r2, r3

which compares the contents of registers r2 and r3 and sets r1 — 1 if r2

is smaller, else 0.

• Example — compile the following C:

if (a < b) go to Less:

assuming we’re using $s0, $s1 for a, b.

CSCI 2321 January 29, 2018

Slide 5

More Flow of Control, Continued

• Do we have enough now? for all six possible C comparisons of integers?

Yes . . .

• One more C flow-of-control construct we could talk about — switch — but

defer for now.

• But we do want to talk about one more HLL feature, namely functions . . .

Slide 6

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

/* */

int foo(int n) { return n+1; }

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

CSCI 2321 January 29, 2018

Slide 7

Procedure Calls, Continued

• So, what we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this?

Slide 8

Sidebar: Register Conventions

• From hardware point of view, all general-purpose registers are in some sense

the same, with the sort-of exception of registers 0 (always has value 0) and

31 (discussed soon).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

• So far — $s0 through $s7 used for variables, $t0 through $t9 used as

“scratch pads”. (See reference card for numeric equivalents.)

• Add two more groups — $a0 through $a3 for parameters (punt for now on

what to do if more than four), $v0 and $v1 for return values. (Why two? to

make it easy to return a 64-bit value such as used for floating-point.)

CSCI 2321 January 29, 2018

Slide 9

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra (31) and jumps to

label. (How do we know address of next instruction? “Program counter”

(special register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

Slide 10

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller (by convention, “temporary” registers might change, but most others

don’t).

• We also need a way to make space for local variables.

CSCI 2321 January 29, 2018

Slide 11

Register Saving and Local Variables, Continued

• Common solution: Use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses,

and register $sp (“stack pointer”) points to top. “Push” and “pop” are then

straightforward.

• (Now everything in the starter-code program should make sense?)

• (Semi-aside: Since $sp can change during computation, can use register

$fp (“frame pointer”) to point to start of area (“procedure frame”) for saved

registers, local variables.)

Slide 12

Other Variables

• Last but not least, we (may?) need someplace to store variables that can be

preallocated (static/global) and variables that are dynamically allocated (e.g.,

with malloc in C).

• By convention, we put them right after the program code and use register

$gp (“global pointer”) to point to them. Typically call the memory used for

dynamically-allocated variables “the heap”.

CSCI 2321 January 29, 2018

Slide 13

Procedure Calls, Revisited

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Determine address of called procedure and jump there, saving address of

next instruction.

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 and $v1.

– Restore saved registers.

– Return to caller.

Slide 14

Example

• How to compile the following?

int main(void) {

int a, b, c, x;

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

return a + b + c;

}

(Sample program call-addproc.s.)

CSCI 2321 January 29, 2018

Slide 15

More Load/Store Instructions

• MIPS architecture defines lw and sw for loading/storing data in 32-bit

chunks; also defines lb (“load byte”) and sb (“store byte”) for loading/storing

data in 8-bit chunks, plus instructions to load/store data in 16-bit chunks.

All must align on appropriate boundaries.

Slide 16

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

• An example is the two instructions the assembler generates for a la

pseudoinstruction (example in simulator).

CSCI 2321 January 29, 2018

Slide 17

Minute Essay

• What if anything was noteworthy (interesting, difficult, etc.) about

Homework 1?

