
CSCI 2321 February 5, 2018

Slide 1

Administrivia

• Almost everyone did well on Quiz 1 (yay!). If you didn’t — six of these, and I

drop the lowest score. Solutions will show up online, linked from the bottom of

“Lecture topics and assignments”, shortly after the quiz.

• Reminder: Homework 2 due today.

• Next homework on the Web; due in two weeks. This one may take you some

time, so try to start soon.

There are a couple of programming problems on this one. It’s up to you what

tool to use to write the programs, but this might be an opportunity to get better

with vim. I recently wrote up some notes for my 1120 class and put a link on

this course’s “Useful links”.

• Quiz 2 rescheduled for next Wednesday (2/14).

Slide 2

Machine Language – Review/Recap

• We’ve worked through some examples of getting machine language (binary)

from assembly language, using “reference card” in front of (paper version of)

textbook. First step is to write down values for all fields in instruction (specifics

different for different types of instructions). How to get from that to 32-bit

binary number or 8-digit hexadecimal number? concatenate fields, convert.

• (Could do more examples, but not needed?) Quickly reviewing formats to

remind you about what they’re used for . . .

CSCI 2321 February 5, 2018

Slide 3

R Format (Review)

• Meant for arithmetic instructions (e.g., add) and also for shifts (e.g., sll).

• Fields:

– op — op code, 6 bits (zero for arithmetic/logical operations, and funct

below specifies which one)

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (only for shifts) instructions), 5 bits

– funct — “function field”, 6 bits (only for arithmetic/logical operations)

Slide 4

I Format (Review)

• Meant for instructions that involve a 16-bit constant (e.g., addi, lw, beq).

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– imm, offset — constant/offset, 16 bits

CSCI 2321 February 5, 2018

Slide 5

J Format

• Meant for instructions that involve an “absolute” address (e.g., j, jal).

• Fields:

– op — op code, 6 bits

– target — address/4, 26 bits

Slide 6

Decoding Machine Language

• How to go the other way — machine instruction to assembly language?

• If what you have is hexadecimal, first write down binary equivalent.

• Look first at opcode (first six bits). Look that up to find out which instruction

and which format.

• Then break other 26 bits into fields based on instruction format, and translate

as appropriate.

• (Examples — use simulator to assemble one instruction of each format and

show hexadecimal, then work back the other way.)

CSCI 2321 February 5, 2018

Slide 7

Assembly Language, Etc. — More Examples

• Textbook presents extended example (sort). Skim as an example of using

MIPS instructions.

• As another example both of writing procedures in MIPS and writing complete

programs for the simulator, try program to compute factorial. (Next time.)

Slide 8

From Source Code to Execution, Revisited

• Conceptually, four steps: compile, assemble, link, load.

• Real systems may merge/modify steps (e.g., might combine compile and

assemble steps).

CSCI 2321 February 5, 2018

Slide 9

Compiling

• Compiler translates high-level language source code into assembly language.

A single line of HLL code could generate many lines of assembly language.

• Just generating assembly language equivalent to HLL is not trivial. Result,

however, can be much less efficient than what a good assembly-language

programmer can produce. (When HLLs were first introduced, this was an

argument against their use.)

• So compilers typically try to optimize — keep values in registers rather than in

memory, for example.

Slide 10

Compiling, Continued

• Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

• Further, many architectures (“RISC”, short for Reduced Instruction Set

Computing) designed with the idea that most programs will be written in a

high-level language, so ease of use for assembly-language programmers not

a goal.

• Some compilers will show you the assembly-language result (e.g., gcc with

the -S flag).

CSCI 2321 February 5, 2018

Slide 11

Assembling

• Assembler’s job is (mostly!) to translate assembly language into ones and

zeros (machine language). Goal is for this process to be simple and

mechanical, unlike compiling. (Compilers usually non-trivial to implement;

assemblers much easier.)

• Input to assembler is program consisting of instructions, labels, “directives”.

Slide 12

Assembling — Instructions

• Instructions generally are symbolic representations of machine-language

instructions.

• However, assemblers can also support “pseudoinstructions” — shorthand for

commonly-occurring uses/combinations of real instructions, readily translated

to real instructions. (Examples in MIPS include li, la; simulator shows

what they’re translated into.)

CSCI 2321 February 5, 2018

Slide 13

Assembling — Labels

• Labels in program define symbols that can be referenced as branch and jump

targets and by la. How does that work?

• Assembler decides where to put code and variables (at two fixed addresses in

simulator). Assembler then builds a “symbol table” mapping names to

addresses and uses it to fill in operands of la, branch and jump instructions.

Slide 14

Assembling — Directives

• Assembler directives (starting . in MIPS) tell the assembler — something.

Examples include .word to define a 4-byte constant, .end.

• (Note in passing that some assemblers also support defining and using

macros, similar to C preprocessor. The one built into SPIM, alas, does not.)

CSCI 2321 February 5, 2018

Slide 15

Linking

• For small programs assembling the whole program works well enough. But if

the program is large, or if it uses library functions, seems wasteful to

recompile sections that haven’t changed, or to compile library functions every

time (not to mention that that requires having their source code).

• So we need a way to compile parts of programs separately and then

somehow put the pieces back together — i.e., a “linker” (a.k.a. “linkage

editor”).

• To do this, have to define a mechanism whereby programs/procedures can

reference addresses outside themselves and can use absolute addresses

even though those might change.

Slide 16

Linking, Continued

• How? define format for “object file” — machine language, plus additional

information about size of code, size of statically-allocated variables, symbols,

and instructions that need to be “patched” to correct addresses. Format is

part of complete “ABI” (Application Binary Interface), specific to combination

of architecture and operating system.

So, output of assembler is one of these, including information about symbols

defined in this code fragment and about unresolved (external) references.

• Linker’s job is then to combine object files, merging code and static-variable

sections, resolving references, and patching addresses. Result should be

something operating system can load into memory and execute —

“executable file”.

CSCI 2321 February 5, 2018

Slide 17

Sidebar: Dynamic Linking

• In earlier times linkers behaved as just described, linking in all needed library

code. But this may not be efficient: It may result in pulling in code for unused

procedures. Also, if the system supports concurrent execution of multiple

threads/applications/etc., might be nice to allow them to share a single copy

in memory of library code.

• “Dynamic linking” supports this, and has the side benefit(?) of allowing

updates to library code without relinking all applications that use it. (Is this

always a benefit?)

• Implementations have different names — “DLL” in Windows, “shared library”

in UNIX. How it works is similar — at link time, link in “stub” routine that at

runtime locates the desired code, loads it into memory (if necessary!) and

patches references.

Slide 18

Loaders

• So what’s left . . .

• “Executable file” contains all machine language for program, except for any

dynamically-linked library procedures. What does the operating system have

to do to run the program? Well . . .

• Obviously it needs to copy the static parts (code, variables) into memory.

(How big are they?) Also it needs to set up to transfer control to the main

program, including passing any parameters. And it may need to perform

dynamic linking. Finally, what about those absolute addresses?

• So as with object code, executable files contain more than just machine

language. File format, like that of object code, is part of ABI.

• Textbook has an example of linking. To be reviewed next time . . .

CSCI 2321 February 5, 2018

Slide 19

Minute Essay

• What does the following code do? i.e., what is in registers $s0 and $s1

after it executes?

add $s0, $zero, $zero

addi $s1, $zero, 1

addi $s2, $zero, 4

label:

addi $s0, $s0, 1

add $s1, $s1, $s1

bne $s0, $s2, label

• Anything noteworthy about Homework 2?

Slide 20

Minute Essay Answer

• We could trace through the code, which sets values in three registers and

then executes a loop:

$s0 is initially set to 0 and then takes on values 1, 2, 3, and 4

$s1 is initially set to 1 and then takes on values 2, 4, 8, and 16

$s2 is initially set to 4 and doesn’t change

