
CSCI 2321 February 12, 2018

Slide 1

Administrivia

• Reminder: Quiz 2 Wednesday. Likely topics those covered in Homework 2

(so, probably C to assembly or the reverse, assembly to machine language or

the reverse, “what does this code do?”).

• Minor updates to Homework 3 posted:

For the first problem, I want you to show the machine instruction in

hexadecimal.

For the assemble/link problem I want you to use the addresses SPIM uses for

the text and data segments.

For the first programming problem, you need a solution to a problem on

Homework 2. I’ve put a sample solution on Google Drive and shared it with all

of you (I hope).

Slide 2

This and That

• If you haven’t already found this — there is a table mapping opcodes to

instructions, hidden in Appendix A (figure A.10.2).

• Also in Appendix A is a summary of register names/usage. Worth noting that

with the exception of registers 0 and 31, they’re all the same to the hardware;

designating some of them for use as temporaries, another as a stack pointer,

etc., is purely a matter of convention, but so useful . . .

• Also in Appendix A is a complete list of instructions and pseudoinstructions. I

prefer that you not use the pseudoinstructions, with a few exceptions that are

hard to avoid, such as la.

• MIPS assembly language also provides for defining “macros”; more in section

A.2. Alas, not supported by SPIM. (Some other assembly languages use this

a lot.)

CSCI 2321 February 12, 2018

Slide 3

Memory Layout

• Again the hardware imposes no particular distinctions on how memory is

used, but useful to adopt conventions. The one described in the text is typical.

From smallest to largest addresses:

– A reserved block (usually for O/S use).

– A block for the program’s text segment (code).

– A block for the program’s data segment, divided into static data (globals,

etc.) and dynamic data (“the heap”). UNIX systems further subdivide this

into a segment for fixed data with values assigned at compile time and a

segment with space for other static data (not initialized) and dynamic data.

– Possibly unused space.

– A block for the stack segment.

• Notice that the data segment grows toward larger addresses, the stack

segment toward smaller addresses.

Slide 4

From Source to Execution — Linking

• As mentioned, object and executable files contain machine language and

other information.

• Details vary, but if you’re curious, a Web search on “ELF file format” should

find information on a format used in many UNIX-like systems.

Commands readelf, nm, and ldd are interesting to try with object and

executable files.

CSCI 2321 February 12, 2018

Slide 5

Linking — Review

• Job of linker is combine one or more object files into “executable file”. Details

vary among platforms, but must include anything the operating system needs

to load the program into memory and start it up — sizes of code and data

segments, location of starting address, anything that needs to be

resolved/fixed at runtime.

• So at a minimum, linker must:

– Merge tables of “global” symbols into combined symbol table.

– Use it to resolve unresolved references.

– Merge code segments, data segments.

– Modify any absolute addresses.

– Output executable file.

Slide 6

Linking — Example

• Textbook presents an example starting on p. 127. Some details seem a bit

murky, so let’s work through it . . .

• One source of possible confusion is the handling of lw and sw instructions,

which apparently . . .

CSCI 2321 February 12, 2018

Slide 7

lw, sw Revisited

• Strictly speaking, these instructions specify a memory address using a

register and a fixed displacement.

• However, seems useful to be able to be able to load and store from address

specified via label. Assembler could support that . . .

• SPIM apparently does so by turning a load/store referencing a label into two

instructions, a lui to in effect put the address of its data segment in $at

(register used as “assembler temporary” — in expanding pseudoinstructions),

and then a load/store using this register and a displacement calculated during

combined assemble/link/load.

• The textbook’s example presupposes a different scheme: Register $gp

points into the middle of the data segment, and load/store instructions are

assembled into code that references this register and a displacement

calculated during link stage.

Slide 8

Linking — Example, Continued

• The one more thing we need to know to do the link is the location of the text

(code) segment and possibly the data segment.

• The textbook’s example uses 0x00400000 for the location of the text

segment and 0x10000000 for the location of the data segment, and also

that register $gp contains 0x10008000.

In the homework, I ask you instead to assume a fixed location for the data

segment, as SPIM does.

CSCI 2321 February 12, 2018

Slide 9

Linking — Example, Continued

• A real linker would need to “patch” machine language for the lw, sw, and

jal instructions that are incomplete in the object code.

• For the jal, it would need to look up the label in the symbol table and then

divide by 4.

• For the lw and sw, it would need to look up the label in the symbol table (say

it’s at address P), and compute a 16-bit displacement D that when

sign-extended and added to the value in $gp gives P .

Slide 10

From Source to Execution — Loading

• Nice summary in Appendix A of what happens in loading. Operating system

must:

– Read executable file to determine sizes of text and data segments.

– “Create address space” big enough for text, data, and stack segments.

(Details vary by O/S.)

– Initialize text and data segments from executable file.

– Set up registers — stack pointer, global pointer, etc.

– Push any arguments to program onto stack.

– Jump to start-up code that copies arguments to registers and calls

program’s main(). On return, makes a system call to terminate

program.

• Note in passing that code invoked by “system calls” is not part of the program;

the syscall instruction jumps to code in the O/S’s part of memory.

CSCI 2321 February 12, 2018

Slide 11

Minute Essay

• Questions about today’s material (or anything else)?

• How far have you gotten with Homework 3?

