
CSCI 2321 February 14, 2018

Slide 1

Administrivia

• Reminder: Homework 3 due Monday. Turn in written problems in hardcopy,

programming problems by e-mail.

Slide 2

Minute Essay From Last Lecture

• Many people had at least looked at Homework 3, but most had not gotten

very far with it (yet!).

CSCI 2321 February 14, 2018

Slide 3

Sidebar(?): Parallel Execution and Synchronization

• A lot of commodity hardware these days features multiple processing units

(“cores”) sharing access to memory. One reason for this is that in theory we

can make individual applications faster by splitting computation up among

processing elements.

• Having processing elements share memory makes parallel programming

easier in some ways but has risks (“race conditions”). Avoiding the risks

requires some way to control access to shared variables (e.g., to implement

notion of “lock”).

Slide 4

Parallel Execution and Synchronization, Continued

• Most texts on operating systems discuss synchronization issues and present

several solutions (“synchronization mechanisms”), some rather high-level and

others not.

(Why is this in O/S textbooks? because O/Ss typically have to manage

“processes” executing concurrently, either truly at the same time or

interleaved.)

• The most primitive can (with some simplifying assumptions) be implemented

with no hardware support. But hardware support is very useful.

CSCI 2321 February 14, 2018

Slide 5

Sidebar: Why is Implementing a Lock Hard?

• It might seem like it would be straightforward to implement a lock — just have

an integer variable, with value 0 meaning “unlocked” and anything else

meaning “locked”. And then you “lock” by looping until the value is 0, then

setting to nonzero, and “unlock” by setting back to 0.

• But this doesn’t work! (Why not?)

Slide 6

Instructions for Synchronization

• Key goal in designing hardware support for synchronization is to provide

“atomic” (indivisible) load-and-store. This allows writing a low-level

implementation of “lock” idea.

• Many architectures do this with a single instruction (e.g., “test and set” or

“compare and swap”). Requires two accesses to memory so may be difficult

to implement efficiently.

• MIPS approach — same idea, but using a pair of instructions, ll (“load

linked”) and sc (“store conditional”). Example of use in textbook (p. 122). sc

“succeeds” only if value at target location has not changed since previous ll

— i.e., if one can regard the pair of instructions as forming a single atomic

load/store.

CSCI 2321 February 14, 2018

Slide 7

Numbers and Arithmetic — Overview?

• Most architectures these days represent integers as fixed-length two’s

complement binary quantities.

• Most architectures these days represent real numbers using one or more of

the formats laid out by the IEEE 754 standard. Based on a base-2 version of

scientific notation, plus special values for zero, plus/minus “infinity”, and “not a

number” (NaN).

(Worth noting, though, that historically there have been architectures that

could represent fractional quantities using base-10 “fixed-point” notation, and

this may be coming back.)

Slide 8

Binary Versus Decimal (Review?)

• In decimal (base 10) notation, each digit is multiplied by a power of 10. Same

idea for binary (base 2), but using powers of 2.

• So, converting from binary to decimal is easy (if tedious), working from

definition.

CSCI 2321 February 14, 2018

Slide 9

Binary Versus Decimal, Continued

• Converting from decimal to binary? Repeatedly divide by 2 and record

remainders . . .

We could describe this as a recursive algorithm for computing bits(n):

– Base case is n < 2; trivial.

– For recursive step, divide n by 2 to get quotient q and remainder r. Then

n = 2q + r, and:

The last bit of bits(n) should be r.

The remaining bits are bits(q), left-shifted by 1.

Slide 10

Binary Versus Decimal, Continued

• Terminology: “Least significant” and “most significant” bits.

• Seems like there would be one obvious way to store the multiple bytes of one

of these in memory, but no — “big endian” versus “little endian” (names based

on Gulliver’s Travels).

CSCI 2321 February 14, 2018

Slide 11

Binary Versus Decimal, Continued

• Binary is useful for showing real internal state but not very compact. Decimal

is compact but not so easy to convert to/from binary.

• We might notice — easy to convert to/from a base that’s a power of 2. Hence

the use of “octal” (base 8) and “hexadecimal” (base 16). For the latter, we

need more than 10 digits, so we use “A” through “F”.

• Notice that we can also convert directly to/from decimal, much as we did for

binary.

Slide 12

Representing Integers (Review?)

• Representing non-negative integers is easy — convert to binary and pad on

the left with zeros.

• What about negative integers?

• Could try using one bit for sign, but then you have +0 and -0, and there are

other complications.

• Or . . . consider a car odometer — in effect, representable numbers form a

circle, since adding 1 to largest number yields 0.

CSCI 2321 February 14, 2018

Slide 13

Representing Integers, Continued

• We could implement the car-odometer idea in binary, and then choose where

to “cut the circle” (between smallest and largest):

– Between 0 and all ones — unsigned integers.

– Between largest number with 0 as the MSB and smallest number with 1 as

MSB — “two’s complement” signed integers.

• Notice that with the two’s complement scheme, +1/-1 moves us “around the

circle” — nothing special needed for negative numbers.

• Notice that if we have n bits, adding 2n to x gives us x again. This leads to

an easy way to compute −x: Compute 2n − x, and notice that

2n − x = (2n − 1)− x+ 1

which is very easy to compute . . .

Slide 14

Signed Versus Unsigned

• If we have n bits, we can use them to represent signed values in — what

range?

Or we can use them to represent non-negative values only (“unsigned

values”) — then what range?

• Many MIPS instructions have “unsigned” counterparts — addu, addiu,

sltu, etc.

• Example: Suppose we have

0x00000000 in $t0

0xfffffff2 in $t1

What happens if we execute slt $t2, $t0, $t1?

What happens if we execute sltu $t2, $t0, $t1?

(Same bits, different interpretations!)

CSCI 2321 February 14, 2018

Slide 15

Sign Extension

• If we have a number in 16-bit two’s complement notation (e.g., the constant in

an I-format instruction), do we know how to “extend” it into a 32-bit number?

For non-negative numbers, easy.

For negative numbers, also not too hard — consider taking absolute value,

extending it, then taking negative again.

• In effect — “extend” by duplicating sign bit.

• (Notice that not all instructions that include a 16-bit constant do this.)

Slide 16

Two’s Complement and Addition/Subtraction

• Addition in binary works much like addition in decimal (taking into account the

different bases). Notice what happens if one number is negative. (Try an

example or two.)

• Subtraction could also be done the way we do in decimal. Or how else could

we do it? (Again, try some examples.)

• But there is one catch, related to the fact that operands and result are all n

bits. What is it?

CSCI 2321 February 14, 2018

Slide 17

Implementing Arithmetic — Preview

• In the next chapter we start talking about hardware design (though still at a

somewhat abstract level).

• For now it may be useful to know that the low-level building blocks are entities

that can evaluate Boolean expressions — very simple ones at the lowest

level, and slightly more complex ones one level up.

• So for example we can implement addition by first making a “one-bit adder”

that maps three inputs (two operands and carry-in) to two outputs (result and

carry-out), and then chaining together 32 of them.

• Multiplication and division, however, may need to be more complex, involving

multiple steps and control-flow logic. (Historical(?) aside: Early

implementations may have just done the simple dumb thing — repeated

additions or subtractions. (!))

Slide 18

Integer Addition, Subtraction, and Negative Values

• Recall(?) how addition works — right to left with carry. Carry-in to rightmost

bit is (of course?) 0.

• Recall(?) also how finding the negative of a number works — “flip all the bits”

and add 1.

• Notice then how if we can build an adder, we can more or less get subtraction

“for free” — compute a− b by adding a and bitwise negation of b with a

carry-in to the rightmost bit of 1. (This is one reason two’s complement

notation is attractive!)

Further, textbook comments that slt could also be implemented using the

same logic — to check for a < b, compute a-b and check for negative

result (high-order bit on). Clever!(?)

CSCI 2321 February 14, 2018

Slide 19

Multiplication

• As with addition, first think through how we do this “by hand” in base 10.

(Review terminology: In a× b, call a the “multiplicand” and b the “multiplier”.)

Example?

• We can do the same thing in base 2, but it’s simpler, no? computing the

partial results is easier. This gives the textbook’s first algorithm, shown in

figures 3.3 through 3.6. (Work through example.)

Notice also that overflow could be a lot worse here — so normally we’ll

compute a result twice as big as the inputs.

• What about signs? Algorithm works, if we extend the sign bit when we shift

right.

Slide 20

Multiplication, Continued

• In MIPS architecture, 64-bit product / work area is kept two special-purpose

registers (lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rs1, rs2

mflo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some multiplications into

shifts. (Which ones?)

CSCI 2321 February 14, 2018

Slide 21

Minute Essay

• None — quiz.

