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Administrivia

• Reminder: Homework 3 due today. Written problems in hardcopy by 5pm (or

so). Programming problems by e-mail by 11:59pm.

Don’t forget the “honor code statement” — the Honor Code pledge (or just

“pledged”), and whether you worked with anyone else. For programming

problems, put it in the source code.

• Homework 4 on the Web. Due in a week.
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Conditional Execution, Revisited

• We’ve done at least one example of compiling an if/else, and there are others

in the textbook.

• Surprisingly few people, however, were able to do this correctly on the quiz:

Most people didn’t seem to realize that after the code for the “if” part, you

need an explicit “jump” to skip the “else” part. If you think about it a minute, it

should be obvious why — how else can the processor know to skip?
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Integer Arithmetic — Recap/Review

• Addition is more or less straightforward: Build single-bit “add” circuit with

carry-in and carry-out and chain 32 (or whatever) of them together. Can

basically use this same circult for subtraction and even for slt.

• Multiplication much more complicated, but based on how it can be done with

pencil and paper, but keeping a “running total” to hold sum of partial products

so far. “Real” MIPS instruction to multiply puts result in two special-purpose

registers lo and hi, and you can then move values into general-purpose

registers.
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Division

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Review terminology: We divide “dividend” a by “divisor” b to

produce quotient q and remainder r, where a = bq + r and 0 ≤ |r| < b.)

Example?

We can do the same thing in base 2; this gives the algorithm shown in

textbook figures 3.8 through 3.10. (Work through example?)

• What about signs? Simplest solution is (they say!) to perform division on

non-negative numbers and then fix up signs of the result if need be.
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Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder is kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient is in lo and remainder is in hi. Two (or more)

instructions needed to do a division and get the result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)
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Integer Addition/Subtraction and Overflow

• If adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.

• For unsigned numbers, how could we tell this had happened?

• How about for signed numbers?
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Addition/Subtraction and Overflow, Continued

• Notice that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened? Does this always work?

• If we add two negative numbers and get overflow, how can we tell this has

happened? Does this always work?
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Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint, we could ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt)

— hardware branches to a fixed address (“exception handler”), usually

containing operating system code to take appropriate action.

So a real C compiler for MIPS would use unsigned arithmetic — C ignores

overflow, so why bother to look for it. Examples in the textbook don’t do this,

perhaps to keep things simpler.
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Representing Real (Non-Integer) Numbers

• Approach is based on a binary version of “scientific notation”:

In base 10, we can write numbers in the form +/− x .yyyy × 10z .

E.g., 428 = 4.28× 102, or −.0012 = −1.2× 10−3.

• We can do the same thing in base 2. Examples:

32 = 1.02 × 25

−3 = −1.12 × 21

1/2 = 1.02 × 2−1

3/8 = 1.12 × 2−2

• This is “floating point” (as opposed to “fixed point”, which would allow for

non-integers but wouldn’t allow as much flexibility — wide range, all with

reasonable precision).
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Representing Real Numbers, Continued

• In base 10, we can completely specify a nonzero number by giving its sign, a

number in the range 1 ≤ x < 10 (the “significand” or “mantissa”), and the

exponent for 10. Same idea applies in base 2.

• So, most/all “floating-point formats” have a bit for the sign, some bits for the

significand, and some bits for the exponent. Different choices are possible,

even with the same total number of bits; (at least) one architecture (VAX)

even supported more than one format with the same number of bits(!).

• With integers, number of bits limits the range of numbers that can be

represented. With “floating-point” numbers, two limiting factors — number of

bits for the significand (which limits what?), and number of bits for the

exponent (which limits what?).

(Does this suggest why the VAX designers offered two formats?)
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Floating-Point, Continued

• Most architectures these days use one or more of the floating-point formats

defined by the IEEE 754 standard. MIPS uses two, 32-bit single precision and

64-bit double precision.

• (Work through example, checking result with show-float program from

“sample programs” page.)
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Floating-Point, Continued

• Recall also that this way of representing real numbers means they aren’t quite

the real numbers of math.

• (Review “floating point is strange” examples from CSCI 1120.)
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Floating-Point, Continued

• Arithmetic on floating-point values is, maybe no surprise, a bit complicated.

• Textbook shows algorithms (in flowchart form). Probably useful/interesting to

skim, but we won’t discuss.
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Floating Point in MIPS Architecture

• Architecture defines 32 floating-point registers ($f0 through $f31), used

singly for single-precision, in pairs for double-precision.

• Instruction set includes:

– Arithmetic instructions:

add.s, sub.s, mul.s, div.s; add.d, sub.d, mul.d, div.d

– Load/store instructions (single-precision):

lwc1; swc1

– Comparisons:

c.eq.s, c.lt.s, etc.; c.eq.d, c.lt.d, etc.

These set a bit true/false, which can be used by bc1t, bc1f.

• (Example program(s) next time.)
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Floating Point in MIPS, Continued

• Some of the instruction names include c1. Short for “coprocessor 1”. What’s

that? well, as textbook mentions, once upon a time chips for PC-class

machines didn’t have enough transistors to implement floating-point

arithmetic, so if it was included in the hardware at all, it was as a separate

chip (“coprocessor”). This may also explain why there are distinct

floating-point registers. Now a thing of the past, but the name stuck.

• “If at all”? was it not possible on machines without floating-point hardware to

do floating-point arithmetic?

Slide 16

Floating Point in MIPS, Continued

• (Can you not do floating-point arithmetic without hardware support?) Sure you

can — in software. (Eek! slow but if packaged in libraries better than nothing.)
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Minute Essay

• Anything noteworthy about Homework 3? For most of you the programming

part was your first try at producing complete-for-SPIM MIPS programs; was it

interesting, tedious, educational, . . . ?


