
CSCI 2321 February 19, 2018

Slide 1

Administrivia

• Reminder: Homework 3 due today. Written problems in hardcopy by 5pm (or

so). Programming problems by e-mail by 11:59pm.

Don’t forget the “honor code statement” — the Honor Code pledge (or just

“pledged”), and whether you worked with anyone else. For programming

problems, put it in the source code.

• Homework 4 on the Web. Due in a week.

Slide 2

Conditional Execution, Revisited

• We’ve done at least one example of compiling an if/else, and there are others

in the textbook.

• Surprisingly few people, however, were able to do this correctly on the quiz:

Most people didn’t seem to realize that after the code for the “if” part, you

need an explicit “jump” to skip the “else” part. If you think about it a minute, it

should be obvious why — how else can the processor know to skip?



CSCI 2321 February 19, 2018

Slide 3

Integer Arithmetic — Recap/Review

• Addition is more or less straightforward: Build single-bit “add” circuit with

carry-in and carry-out and chain 32 (or whatever) of them together. Can

basically use this same circult for subtraction and even for slt.

• Multiplication much more complicated, but based on how it can be done with

pencil and paper, but keeping a “running total” to hold sum of partial products

so far. “Real” MIPS instruction to multiply puts result in two special-purpose

registers lo and hi, and you can then move values into general-purpose

registers.

Slide 4

Division

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Review terminology: We divide “dividend” a by “divisor” b to

produce quotient q and remainder r, where a = bq + r and 0 ≤ |r| < b.)

Example?

We can do the same thing in base 2; this gives the algorithm shown in

textbook figures 3.8 through 3.10. (Work through example?)

• What about signs? Simplest solution is (they say!) to perform division on

non-negative numbers and then fix up signs of the result if need be.



CSCI 2321 February 19, 2018

Slide 5

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder is kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient is in lo and remainder is in hi. Two (or more)

instructions needed to do a division and get the result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Notice, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

Slide 6

Integer Addition/Subtraction and Overflow

• If adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.

• For unsigned numbers, how could we tell this had happened?

• How about for signed numbers?



CSCI 2321 February 19, 2018

Slide 7

Addition/Subtraction and Overflow, Continued

• Notice that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened? Does this always work?

• If we add two negative numbers and get overflow, how can we tell this has

happened? Does this always work?

Slide 8

Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint, we could ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt)

— hardware branches to a fixed address (“exception handler”), usually

containing operating system code to take appropriate action.

So a real C compiler for MIPS would use unsigned arithmetic — C ignores

overflow, so why bother to look for it. Examples in the textbook don’t do this,

perhaps to keep things simpler.



CSCI 2321 February 19, 2018

Slide 9

Representing Real (Non-Integer) Numbers

• Approach is based on a binary version of “scientific notation”:

In base 10, we can write numbers in the form +/− x .yyyy × 10z .

E.g., 428 = 4.28× 102, or −.0012 = −1.2× 10−3.

• We can do the same thing in base 2. Examples:

32 = 1.02 × 25

−3 = −1.12 × 21

1/2 = 1.02 × 2−1

3/8 = 1.12 × 2−2

• This is “floating point” (as opposed to “fixed point”, which would allow for

non-integers but wouldn’t allow as much flexibility — wide range, all with

reasonable precision).

Slide 10

Representing Real Numbers, Continued

• In base 10, we can completely specify a nonzero number by giving its sign, a

number in the range 1 ≤ x < 10 (the “significand” or “mantissa”), and the

exponent for 10. Same idea applies in base 2.

• So, most/all “floating-point formats” have a bit for the sign, some bits for the

significand, and some bits for the exponent. Different choices are possible,

even with the same total number of bits; (at least) one architecture (VAX)

even supported more than one format with the same number of bits(!).

• With integers, number of bits limits the range of numbers that can be

represented. With “floating-point” numbers, two limiting factors — number of

bits for the significand (which limits what?), and number of bits for the

exponent (which limits what?).

(Does this suggest why the VAX designers offered two formats?)



CSCI 2321 February 19, 2018

Slide 11

Floating-Point, Continued

• Most architectures these days use one or more of the floating-point formats

defined by the IEEE 754 standard. MIPS uses two, 32-bit single precision and

64-bit double precision.

• (Work through example, checking result with show-float program from

“sample programs” page.)

Slide 12

Floating-Point, Continued

• Recall also that this way of representing real numbers means they aren’t quite

the real numbers of math.

• (Review “floating point is strange” examples from CSCI 1120.)



CSCI 2321 February 19, 2018

Slide 13

Floating-Point, Continued

• Arithmetic on floating-point values is, maybe no surprise, a bit complicated.

• Textbook shows algorithms (in flowchart form). Probably useful/interesting to

skim, but we won’t discuss.

Slide 14

Floating Point in MIPS Architecture

• Architecture defines 32 floating-point registers ($f0 through $f31), used

singly for single-precision, in pairs for double-precision.

• Instruction set includes:

– Arithmetic instructions:

add.s, sub.s, mul.s, div.s; add.d, sub.d, mul.d, div.d

– Load/store instructions (single-precision):

lwc1; swc1

– Comparisons:

c.eq.s, c.lt.s, etc.; c.eq.d, c.lt.d, etc.

These set a bit true/false, which can be used by bc1t, bc1f.

• (Example program(s) next time.)



CSCI 2321 February 19, 2018

Slide 15

Floating Point in MIPS, Continued

• Some of the instruction names include c1. Short for “coprocessor 1”. What’s

that? well, as textbook mentions, once upon a time chips for PC-class

machines didn’t have enough transistors to implement floating-point

arithmetic, so if it was included in the hardware at all, it was as a separate

chip (“coprocessor”). This may also explain why there are distinct

floating-point registers. Now a thing of the past, but the name stuck.

• “If at all”? was it not possible on machines without floating-point hardware to

do floating-point arithmetic?

Slide 16

Floating Point in MIPS, Continued

• (Can you not do floating-point arithmetic without hardware support?) Sure you

can — in software. (Eek! slow but if packaged in libraries better than nothing.)



CSCI 2321 February 19, 2018

Slide 17

Minute Essay

• Anything noteworthy about Homework 3? For most of you the programming

part was your first try at producing complete-for-SPIM MIPS programs; was it

interesting, tedious, educational, . . . ?


