
CSCI 2321 March 21, 2018

Slide 1

Administrivia

• (None?)

Slide 2

Designing a Processor — Review

• The “big picture” of Figure 4.1 consists of two kinds of components:

• ALU and adders are combinational logic blocks — things that map inputs to

outputs with no notion of persistent state. We looked at the textbook’s design

of a simplified ALU. But where do those inputs come from, and what happens

to the outputs? Well . . .

• Other elements are sequential logic blocks that do include a notion of

persistent state, and can be built around “memory elements”. Look at those

next . . .



CSCI 2321 March 21, 2018

Slide 3

Memory Elements

• Start with a logic block that can hold a value:

– Inputs are old value, “set” (to 1), “reset” (to 0).

– Outputs are value, negation of value.

• An unclocked logic block that can do this — Figure B.8.1. (“Unclocked”? more

about clocking next.)

• But in a typical design, you want to use these both as inputs and outputs to

combination-logic blocks (think for example about how a MIPS add on

registers should work). How is this possible? how could values ever “settle

down”?

First, a little about clocking . . .

Slide 4

A Very Little Bit About Clocking

• Many (most, currently?) hardware designs are based on the idea of a “clock”

— something that generates regular signal changes and can be used to

control when updates to state elements happen.

• As sketched in section B.7 — inputs/outputs to combinational logic block are

connected to state elements. Input values are “sampled” at one point in the

clock cycle and written out at a different point in the cycle — “synchronous”

circuit. (So does that mean “asynchronous” circuits are also possible? yes,

but well beyond the scope of this course.)



CSCI 2321 March 21, 2018

Slide 5

A Very Little Bit About Clocking, Continued

• Figure B.7.2 shows the overall scheme, though it could be clearer: The idea is

that we want, between state element 1 (input) and the CL block some kind of

barrier/switch that can either let bits flow or not, and the same thing between

the CL block and state element 2, with only one of those barriers letting bits

flow at a time.

• Why do this? as a way to avoid race conditions.

• One implication, though, is that the clock cycle has to be long enough for the

slowest combinational logic block!

Slide 6

Memory Elements, Continued

• Figure B.8.2 shows such a barrier (“latch”) — circuit that stores one bit and

only samples data input when clock input is 1. Details interesting but not

really crucial for this course!



CSCI 2321 March 21, 2018

Slide 7

Register Files

• (Notice here that “file” here has essentially nothing in common with what we

usually mean by “file” in CS!)

• So now we have something that can read/write/save one bit, and we know (in

principle) how to control when its value is read and written. But what we want

is a bunch of “registers” that can each read/write/save 32 bits.

• Usual approach — “register file”, a logic block that holds a bunch of values

and allows us to read and write them. Figures B.8.7 and following give more

details (next slides), and this should look like something that would be useful

in implementing MIPS instructions with register operands, no?

Slide 8

Register Files, Continued

• Inputs:

– Two (multi-bit) register numbers saying which registers we want to “read”

(use as input to some operation).

– One (multi-bit) register number saying which register we (might) want to

“write” (change the value of).

– One (32-bit) value to (maybe) save in a register.

– A “yes do a write” bit.

• Outputs:

– Two (32-bit) values representing the contents of the two registers selected

by the “read register” numbers used as input.



CSCI 2321 March 21, 2018

Slide 9

Register Files, Continued

• Figure B.8.7 shows “big picture”.

• Figures B.8.8 and B.8.9 show some of details. Notice that looks sort of like

top-down design as used in the world of programming — start at fairly high

level of abstraction and then fill in details.

Slide 10

SRAM and DRAM

• What about RAM (Random Access Memory)? in some ways this is much like

a register file, but with a single address rather than three register numbers, as

shown in Figure B.9.1.

• Internal details . . . Two options (at least):

– Static RAM (“SRAM”), which maintains state as long as there’s power and

is pretty similar to the implementation of a register file.

– Dynamic RAM (“DRAM”), which makes use of capacitors as well as

transistors and has to be refreshed periodically.

(Guess which one “costs” more.)



CSCI 2321 March 21, 2018

Slide 11

The Big Picture, Revisited

• We’ve sketched what we need for the “datapath” part of a MIPS processor —

combinational logic blocks to perform arithmetic/logic operations (ALU),

sequential logic blocks to store information (register file, RAM).

• Now we need something to control it — which may also involve sequential

logic blocks. So another detour through Appendix B . . .

Slide 12

Finite State Machines

• Typically represent sequential logic blocks as “finite state machines”,

consisting of

– Input(s).

– Output(s).

– Current state (one of a set of possible states).

(For those of you who’ve taken the theory course, these are the finite

automata probably covered there.)

• Define FSM by Boolean expressions that map

– Current state and input(s) to next state.

– Current state and (optionally) input(s) to output(s).



CSCI 2321 March 21, 2018

Slide 13

Finite State Machines

• Appendix B example — controlling a traffic light. (Figures B.10.1 through

B.10.3 and surrounding text.)

• In general, the idea is to:

– Assign numbers to states, and figure out how many bits are needed to

represent this (only one for example, more if more than two states).

– Write down Boolean expressions for bits of next state (one for each bit)

based on bits of current state and inputs.

– Write down Boolean expressions for output bits based on bits of current

state and inputs.

Slide 14

Implementing the MIPS Architecture

• Goal of Chapter 4 is to show how we could use the low-level building blocks

described in Appendix B to implement a proof-of-concept subset of the

architecture (instructions, registers, etc.) we’ve defined.

• “Proof of concept”? yes, the subset we’ll implement may not be enough to do

anything useful or interesting, but it should be enough to illustrate how we

could implement the rest of the architecture. To be continued . . .



CSCI 2321 March 21, 2018

Slide 15

Minute Essay

• Between these lectures and the textbook, are you starting to understand the

“big picture” (Figure 4.1) and how we can build something out of AND, OR,

and NOT to implement pieces of it?


