
CSCI 2321 April 2, 2018

Slide 1

Administrivia

• (By e-mail.)

Slide 2

Designing a Processor — Recap

• The goal is to sketch out an implementation of a small but (we hope)

representative selection of MIPS instructions, consisting of three groups:

– Memory-access instructions (lw, sw).

– Arithmetic/logical instructions (add, sub, and, or, slt).

– Control-flow instructions (beq, j).

• Implementation is in terms of combinational logic blocks and state elements,

all ultimately constructed from AND and OR gates and inverters. Note

however the frequent use of layers of abstraction.

• To make it possible for state elements to be changed in some controlled way,

we use “clocking”.



CSCI 2321 April 2, 2018

Slide 3

Clocking — Recap/Review

• Hardware will include something that implements a “clock cycle”.

• State elements’ inputs are “sampled” during one phase of this cycle, and

outputs change as inputs change. (So, these use the latches of Appendix B.)

• Length of cycle determines how complicated the various logic blocks can be

(or vice versa).

Slide 4

Some Components We Want

• A register file.

• Some memory (which for simplicity we’ll separate into instruction memory and

data memory).

• Some way of representing where to find the “next” instruction — a “special

purpose” register typically called “program counter” (PC).

• One or more ALUs (why more than one? should become obvious soon).

• “Control logic”. (More soon.)

• Figures 4.1 and 4.2 sketch overall plan. How does Figure 4.1 relate to what

we need to do . . .



CSCI 2321 April 2, 2018

Slide 5

Fetching Instructions and Updating PC

• For all instructions, start by getting instruction from memory. (What do we

need? How does this map to Figure 4.1?)

• For most instructions, at some point we need to increment PC. (What do we

need? How does this map to the figure?)

• And then the three groups of instructions do different things, but there are

some commonalities . . .

Slide 6

Memory-Access Instructions

• Instruction includes two registers (one for base address, one for where to load

into / store from) and a 16-bit displacement.

• Needed computation:

– Add displacement to register containing address.

– Use result to access memory, loading/storing to/from register containing

data.

• How does this map to Figure 4.1? (Also see Figure 4.19.)



CSCI 2321 April 2, 2018

Slide 7

Arithmetic/Logic Instructions

• Instruction includes three registers (two for input operands, one for result).

• Needed computation:

– Perform operation (with ALU) using values from two registers as inputs.

– Save result in target register.

• How does this map to Figure 4.1? (Also see Figure 4.20.)

Slide 8

Control-Flow Instructions (beq)

• (j later.)

• Instruction includes two registers (data to compare) and a 16-bit displacement

used to find target of branch.

• Needed computation:

– Compare contents of two registers.

– Compute address of branch target (PC plus displacement).

– Use result of comparison to choose value for next PC.

• How does this map to Figure 4.1? (Also see Figure 4.21.)



CSCI 2321 April 2, 2018

Slide 9

Overview Revisited

• Figure 4.1 seems to have ways to do everything we need to do — paths for

data to flow from one place to another, including into ALU(s) for computation.

• For every instruction we’re in some sense doing the same things (have each

ALU compute something), but some results are essentially discarded.

(Example — beq computes two “next instruction” addresses, but only stores

one back into the PC.) This is very typical of how things work at this level.

Slide 10

The “Datapath” — What’s Missing

• Inputs to some blocks (e.g. PC) can come from more than one source. That

can’t work. So we need multiplexors to control which is used.

• Inputs to ALU / adder are 32 bits, but for some instructions we want to get one

of them from 16 bits in instruction. So we need something to extend that to 32

bits by extending sign.

• Both control-flow instructions include something that needs to be shifted two

bits before being used to compute a target address, so we need to support

that.

• Add these to “datapath” part of Figure 4.1 to get Figure 4.15. Leaves out

“control” part, substituting not-connected-yet control inputs (blue in figures.)

• Right now we’re showing the whole instruction as input to all elements that

need part of it; we’ll refine this later.



CSCI 2321 April 2, 2018

Slide 11

Control Logic

• So we have a “datapath” that can do things, but there are some inputs that

aren’t connected to anything. An analogy — the datapath is a puppet, and

these inputs are its strings.

• Who/what pulls the strings? the “control logic” — combinational logic whose

input is the current instruction plus any other needed information and whose

output is those disconnected inputs to datapath.

Slide 12

Control Logic

• Figure 4.16 shows names of “control signals” and what they mean. (Note:

Textbook uses “asserted” and “deasserted”; I’ll just use 1 and 0 — textbook

indicates that this is a bit sloppy but I think okay for our purposes.)

• How to generate them? As mentioned in Appendix B, tools exist to transform

truth tables into combinational logic, so it will be enough to come up with one

that generates the needed signals.

• Section 4.4 works through details. A lot of it should seem like common sense

(viewed from the right angle?). Only potentially tricky part is input to ALU

“which operation?” . . .



CSCI 2321 April 2, 2018

Slide 13

ALU Control Input

• ALU as designed in Appendix B uses 4 bits to represent which operation is to

be done — 2-bit input to multiplexor plus two “inverted input” signals (see

Figure B.5.10 and table on p. 259 — e.g., 0010 to add, 0110 to subtract).

Seems like it would be simple enough for the main control unit to generate

these directly, no?

• However, turns out to be even simpler to split functionality into two parts —

generate a 2-bit “ALU operation” from just the opcode field, and then use that

plus (for some instructions) the function field to tell the ALU what to do.

Slide 14

Instruction Execution Details — Tracing What Happens

• Tracing through what happens as various instructions are executed is tedious

but (I think!) instructive:

• Work from Figure 4.17 (revised/improved version of 4.15) and the tables in

Figure 4.18 and Figure 4.13.

• Start art by writing down what you know: Output of PC (its current value),

fields of instruction.

• Use figure and tables to fill in other things, tracing through how bits flow.

• What you come up should be consistent with what the instruction is supposed

to do.



CSCI 2321 April 2, 2018

Slide 15

Instruction Execution Details — Examples

• Example add. (Solution online as part of Homework 6 assignment.)

• Example lw. (Solution online as part of Homework 6 assignment.)

Slide 16

Minute Essay

• The design sketched so far has two separate memory blocks, one for

instructions and one for data. This turns out to be needed for the simplest

implementation, one in which each instruction executes in a single cycle.

Why? is there something different about the types of values to be stored, or is

there some other reason? (Hint: Think about what has to happen for lw.)



CSCI 2321 April 2, 2018

Slide 17

Minute Essay Answer

• For lw, you need to be to both load the instruction and also load something

from the specified address. (This is an open-ended version of one of the

textbook’s “check yourself” questions for section 4.3.)


