
CSCI 2321 February 6, 2019

Slide 1

Administrivia

• Reminder: Homework 2 due Monday.

• Monday we have a candidate for our open faculty job speaking at 2:30pm. I

should be there, so no class. I’m planning to do a video lecture and make it

available via echo360.org.

Slide 2

Minute Essay From Last Lecture

• (Review. Most people figured out that I format seemed right, but many

expressed some confusion. A lot of this is new and strange, but I think with

exposure it will start to make sense. Or ask if not!)

• Maybe this is where I can say:

I started out in FORTRAN but it wasn’t until a second-semester course in IBM

mainframe assembly language that I really started to understand how

programming worked. “Hm!”?

1

CSCI 2321 February 6, 2019

Slide 3

Instruction Formats — Review/Clarification

• Basic problem being solved is this: How to represent different kinds of

instructions in binary? We’ve already seen that some instructions have the

same kinds of operands (add and sub, e.g.), but not all the same (add and

lw, e.g.).

• MIPS solution: Make all machine-language instructions same size (32 bits),

and always use the first 6 bits for “opcode” (something identifying instruction),

then define different ways of splitting up the remaining bits — different

“instruction formats”, each with “fields”.

Slide 4

Sidebar: Converting between Binary and Hexadecimal

• Recall(?) simple trick for converting between binary (base 2) and

hexadecimal (base 16): Based on observation that each hexadecimal digit

represents four binary digits.

• (Why this works — simple algebra based on writing out numbers as a

sequence of multiples of powers of the base.)

2

CSCI 2321 February 6, 2019

Slide 5

Instructions — Recap/Clarification

• add, sub somewhat obvious.

• and, or — bitwise operations. (Examples.)

• sll, srl, sra — bit-shift operations. (Examples.)

Slide 6

Sidebar: go to in C

• Textbook freely uses C’s go to, which possibly some of you have never

encountered? because it’s strongly discouraged, and kind of ugly.

• What it does: Immediately transfer control to some other point in the program,

identified by a label (e.g., here:).

• Conditional execution and loops can all be expressed using go to (and in

some early high-level languages they were(!)).

Makes some sense, since this is pretty much all the hardware can do.

• (Sometimes written goto. Same thing.)

3

CSCI 2321 February 6, 2019

Slide 7

Conditional Execution — Recap/Review

• MIPS instruction set includes only two instructions to support conditional

execution: beq and bne.

• There’s also an unconditional “go to”, j (for “jump”).

• Together these are enough for some kinds of if/then/else and loops.

• If hand-compiling from C, useful to first translate into code with only goto for

out-of-sequence execution, and from there to MIPS.

• Example:

while (A[i] == k) {

i = i + j;

}

Slide 8

Example Continued

• MIPS equivalent, with C-with-goto as comments (and assuming $s0 has

the address of A and registers $s1 through $s3 have i, j, and k):

Loop:

if (A[i] != k) goto End:

sll $t0, $s1, 2 # i * 4

add $t0, $s0, $t1 # &A[i]

lw $t0, 0($t1) # A[i]

bne $t0, $s3, End

i = i + j

add $s1, $s1, $s2

goto Loop:

j Loop

End:

4

CSCI 2321 February 6, 2019

Slide 9

More Flow of Control

• With what we have now we can do if/then/else and loops, but only if condition

being tested is equals / not equals.

• So, we need instructions such as blt, ble, right?

• But those are apparently difficult to implement well; instead MIPS has “set on

less than”:

slt r1, r2, r3

which compares the contents of registers r2 and r3 and sets r1 — 1 if r2

is smaller, else 0.

• Example — compile the following C:

if (a < b) go to Less:

assuming we’re using $s0, $s1 for a, b.

Slide 10

Example Continued

• Equivalent MIPS:

slt $t0, $s0, $s1

bne $t0, $zero, Less

5

CSCI 2321 February 6, 2019

Slide 11

More Flow of Control, Continued

• Do we have enough now? for all six possible C comparisons of integers?

Yes . . .

• One more C flow-of-control construct we could talk about — switch — but

defer for now.

• But we do want to talk about one more HLL feature, namely functions . . .

Slide 12

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

/* */

int foo(int n) { return n+1; }

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

6

CSCI 2321 February 6, 2019

Slide 13

Procedure Calls, Continued

• So, what we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this?

Slide 14

Sidebar: Register Conventions Revisited

• From hardware point of view, all general-purpose registers are in some sense

the same, with the sort-of exception of registers 0 (always has value 0) and

31 (discussed soon).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

7

CSCI 2321 February 6, 2019

Slide 15

Register Conventions, Continued

• So far:

$s0 through $s7 for variables.

$t0 through $t9 as “scratch pads”.

• Add two more groups:

$a0 through $a3 for parameters (punt for now on what to do if more than

four).

$v0 and $v1 for return values. (Why two? to make it easy to return a 64-bit

value such as used for floating-point.)

Slide 16

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra (31) and jumps to

label. (How do we know address of next instruction? “Program counter”

(special register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

8

CSCI 2321 February 6, 2019

Slide 17

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller. (By convention, “temporary” registers might change, but most

others don’t.)

• We also need a way to make space for local variables.

Slide 18

Register Saving and Local Variables, Continued

• Typical solution: Use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses.

and register $sp (“stack pointer”) points to top. “Push” and “pop” are then

straightforward.

(Recall discussion of “buffer overflows” from CSCI 1120?)

• (Now everything in the starter-code program should make sense?)

9

CSCI 2321 February 6, 2019

Slide 19

Procedure Calls, Revisited

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Determine address of called procedure and jump there, saving address of

next instruction.

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 and $v1.

– Restore saved registers.

– Return to caller.

Slide 20

Example

• How to compile the following?

int main(void) {

int a, b, c, x;

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

return a + b + c;

}

(Sample program call-addproc.s.)

10

CSCI 2321 February 6, 2019

Slide 21

Minute Essay

• None — quiz.

11

