
CSCI 2321 February 13, 2019

Slide 1

Administrivia

• As mentioned in e-mail, there will be a second lecture for this week, as a

video lecture, available Friday I hope. There will also be one for Monday’s

class since we have another faculty candidate interviewing.

• Homework 3 will be on the Web later today. Due a week from today.

Some written problems and one programming problem (in MIPS assembler)!

One more homework before Exam 1, to be due the following Wednesday.

Slide 2

Administrivia

• Quiz 1 graded and sample solution posted (bottom of “lecture topics”

etc. page).

• Quiz 2 next Wednesday. Topics from chapter 2, up through addressing

modes.

• (I am working on grading Homework 1. Soon?)

1

CSCI 2321 February 13, 2019

Slide 3

Procedure Calls — Review/Recap

• Calling procedure must:

– Put parameters in $a0 through $a3 (if more than four, on stack).

– Use jal to jump to called procedure (which saves the return address in

register $ra).

– Get return value from $v0 (and $v1, if used).

• Called procedure must:

– Save registers as needed, including return address.

– Retrieve parameters and do calculation.

– Put results in $v0 (and $v1, if used).

– Restore saved registers.

– Return to caller with jr $ra.

Slide 4

Variables

• Space for local variables typically allocated on the stack. Since $sp can

change during computation, can use register $fp (“frame pointer”) to point to

start of area (“procedure frame”) for saved registers, local variables.

• What about other variables? Two basic types: fixed/static (think global

variables) and dynamically allocated (think C malloc(). (e.g., with

malloc in C).

By convention, we put them right after the program code and use register

$gp (“global pointer”) to point to them. Typically call the memory used for

dynamically-allocated variables “the heap”.

2

CSCI 2321 February 13, 2019

Slide 5

More Load/Store Instructions

• MIPS architecture defines lw and sw for loading/storing data in 32-bit

chunks; also defines lb (“load byte”) and sb (“store byte”) for loading/storing

data in 8-bit chunks, plus instructions to load/store data in 16-bit chunks.

All must align on appropriate boundaries.

Slide 6

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

• An example is the two instructions the assembler generates for a la

pseudoinstruction (example in simulator).

3

CSCI 2321 February 13, 2019

Slide 7

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand.

• Which is used? Defined by instruction format (R, I, J). (J? yes, format for jump

instructions that include a label — jal and j.)

Slide 8

Addressing Modes, Continued

• Register addressing: Value is in one of the general-purpose registers.

Assembler defines symbolic names for them (e.g., $t0).

• Immediate addressing: Value is in instruction itself (as in, e.g., addi).

• Base-displacement addressing: Value is in memory, with address calculated

by adding a displacement to what’s in a register. Example is memory-address

operand of lw, sw.

• PC-relative addressing (more shortly).

• Pseudo-direct addressing (more shortly).

4

CSCI 2321 February 13, 2019

Slide 9

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter. The

simulator doesn’t quite simulate this, unless run with the flag

-delayed branches.

• Example is conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

Slide 10

PC-Relative Addressing, Continued

• 16-bit offset obviously does limit how far we can “jump”. But it’s probably fine

for most uses (conditional execution, loops).

• If it’s not, we could rework the code so we can either use j or jr.

5

CSCI 2321 February 13, 2019

Slide 11

PC-Relative Addressing — Example

• As an example, try working out machine code for the bne in this line

(comments with relative locations included so we can easily compute the

offset we need):

bne $t0, $t1, There

add $t2, $zero, $zero

add $t3, $zero, $zero

add $t4, $zero, $zero

There:

sub $t5, $zero, $zero

Slide 12

PC-Relative Addressing — Example, Continued

• Look up opcode — 0x5.

• Look up register numbers — 8, 9.

• Compute needed offset by . . . Strictly speaking, should be offset from relative

location of instruction after the bne to “branch target” (There), divided

by 4. But just counting instructions gives the same effect (and here’s it 3).

• Rearranging bits and converting to hexadecimal, we get 0x15090003.

Does this agree with what SPIM shows? Not quite . . .

6

CSCI 2321 February 13, 2019

Slide 13

PC-Relative Addressing — Example, Continued

• For some reason, SPIM by default computes offsets from the current

instruction rather than the next. No idea why, but we can force it to compute

the “right” offsets with flag -delayed branches.

Slide 14

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter.

(Actually, address is address in instruction times 4, or’d with upper bits of

program counter.)

• Example is unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

7

CSCI 2321 February 13, 2019

Slide 15

Pseudo-Direct Addressing, Continued

• 26-bit address does limit what we can do, but it’s probably fine for most uses

(conditional execution and loops, procedure calls).

• If it’s not enough, we can rework the code so we can use jr.

Slide 16

Pseudo-Direct Addressing — Example

• As an example, trying working out machine code for the previous example

with j There replacing the bne:

j There

add $t2, $zero, $zero

add $t3, $zero, $zero

add $t4, $zero, $zero

There:

sub $t5, $zero, $zero

8

CSCI 2321 February 13, 2019

Slide 17

Pseudo-Direct Addressing — Example, Continued

• Look up opcode — 0x2.

• To get the 26-bit value for the address, we need not a relative location (as for

bne) but an absolute one.

To do that we need to know where in memory the (machine) code resides.

Suppose we paste this code into the starter example, right after the “opening

linkage” code, and use as the starting address of the whole progrram the

location where SPIM puts main:. That’s 0x0040 0024. Counting up,

we get an address of 0x0040 003c for There. Removing the top four

bits of that and dividing by 4, we get

0000 0100 0000 0000 0000 0011 11

• Putting the two fields together and converting to hexadecimal gives

0810000f, which agrees with SPIM.

Slide 18

Writing Complete Programs for the Simulator

• The simulator includes what’s in essence a very primitive operating system,

with facilities to load programs and do simple I/O. As in real operating

systems, I/O is done by making “system calls”.

• Complete programs can be run from the command line with, e.g., spim

-file hello.s.

9

CSCI 2321 February 13, 2019

Slide 19

System Calls

• System calls are how user programs request service from the operating

system — not just in MIPS, but in general. In MIPS the instruction is

syscall; other architectures have something analogous.

• System calls similar to procedure calls in some ways: Need to communicate

to O/S which service you want (e.g., write some text to “standard output”) and

possibly parameters (e.g., the text to write). As with procedure calls, do this

by putting values in particular registers, but then rather than jal we use

syscall.

So why not just use jal?? Well . . .

Slide 20

System Calls, Continued

• An important distinction (discussed more in O/S courses, such as our

CSCI 3323): Code for “system call” executes as part of the O/S, which means

not subject to same restrictions as user programs (e.g., on memory access).

• Details (e.g., what services are offered) depend on the O/S. The very primitive

O/S included in spim supports some for simple I/O; details in Appendix A.

10

CSCI 2321 February 13, 2019

Slide 21

Complete Programs — Examples

• We can now write some simple but complete programs for the simulator(!).

• (Examples on “sample programs” page.)

Slide 22

Minute Essay

• Any questions? Is this all starting to make sense to you?

11

