
CSCI 2321 February 20, 2019

Slide 1

Administrivia

• Reminder: Homework 3 due today (written problems 5:30pm, programming

problem by 11:59pm).

• Homework 4 posted; due next Friday.

One written problem; may look intimidating but doable if you go step by step.

One programming problem; should not to be too hard using factorial

examples as a model.

• Quiz 3 next Wednesday.

Slide 2

More Administrivia

• Yes, the homeworks are coming at you fairly quickly. This is because we have

an exam scheduled in two weeks, and I want to wrap up the discussion of

MIPS assembler language before that, preferably in time for you to do

homeworks and get feedback on them.

(I’ll probably send out a mail-to-all later today asking about the pace of the

class, the scheduling of the exam, etc.)

1



CSCI 2321 February 20, 2019

Slide 3

More Administrivia

• Homework 1 graded. (Finally!) Most people did well.

In case you wonder about point deductions, my scheme for problems with

multiple parts is this:

Deductions for individual parts to the right, deductions for whole problem on

the left. (I think this makes it easier for me to add them up.)

Slide 4

Minute Essay From 2/13 Lecture

• Many people seem to be finding this material not-easy, but many also say it

becomes clearer when they do the homeworks. That’s the goal!

• One person remarked that it seems like every time she starts to make sense

of one concept, here comes another, equally “foreign and confusing”.

Frustrating, I suppose, but as long as things make sense with time and

practice?

2



CSCI 2321 February 20, 2019

Slide 5

Minute Essay From 2/15 Lecture

• Most people who’ve replied (16 out of 42 as of 2:20pm today — ?!) said the

review was helpful. Good!

Slide 6

Homework 1 Essays

• Many people found something about the problems interesting, though many

also found them somewhat tedious, and one person said “busy-work”. “Yeah

well”?

• Several people commented on the problem about fallacies. This is one of the

things I like about this discussion — performance not as simple as one

number.

One person commented that it’s interesting that after discussion of how hard it

is to quantify performance we then talk about “best performance”. Good point!

• For the problem about computing parallel execution times, several people

didn’t realize “sequential time” and “parallel time on 1 processor” were distinct

things. But they are, and this is not atypical of real programs.

3



CSCI 2321 February 20, 2019

Slide 7

Homework 1 Essays, Continued

• Some people did write code for that problem, though nowhere a majority. Of

40, 12 people wrote code:

– 4 Scala

– 2 Python

– 2 spreadsheet

– 1 C

– 1 C++

– 1 Haskell

– 1 unknown-to-me language

(It would never have occurred to me to use a spreadsheet. But getting

new-to-me perspectives is a fun part of my job?)

Slide 8

From Source Code to Execution — Recap/Review

• Four main phases, conceptually at least — compile, assemble, link, load.

• Real systems (or simulators) may combine steps, in appearance or even in

reality — e.g., a compiler might go directly from high-level source to object

code, in appearance or in fact, and the SPIM simulator assembles “on the fly”.

4



CSCI 2321 February 20, 2019

Slide 9

Compiling

• Compiler translates high-level language source code into assembly language.

A single line of HLL code could generate many lines of assembly language.

• Just generating assembly language equivalent to HLL is not trivial. Result,

however, can be much less efficient than what a good assembly-language

programmer can produce. (When HLLs were first introduced, this was an

argument against their use.)

• But eventually compilers got “smarter” . . .

Slide 10

Compiling, Continued

• One reason compilers are so big and complicated is that more and more they

try to “optimize” (generate code that’s more efficient than a naive translation),

for example, by keeping values in registers to reduce the number of memory

accesses.

• Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

• Further, many architectures (“RISC”, short for Reduced Instruction Set

Computing) designed with the idea that most programs will be written in a

high-level language, so ease of use for assembly-language programmers not

a goal.

• Some compilers will show you the assembly-language result (e.g., gcc with

the -S flag). (A bit more about this another time.)

5



CSCI 2321 February 20, 2019

Slide 11

Assembling

• Assembler’s job is (mostly!) to translate assembly language into ones and

zeros (machine language). Goal is for this process to be simple and

mechanical, unlike compiling. (Compilers usually non-trivial to implement;

assemblers much easier.)

• Input to assembler is program consisting of instructions, labels, “directives”.

Slide 12

Assembling — Instructions

• Instructions generally are symbolic representations of machine-language

instructions.

• However, assemblers can also support “pseudoinstructions” — shorthand for

commonly-occurring uses/combinations of real instructions, readily translated

to real instructions. (Examples in MIPS include li, la; simulator shows

what they’re translated into.)

6



CSCI 2321 February 20, 2019

Slide 13

Assembling — Labels

• Labels in program define symbols that can be referenced as branch and jump

targets and by la. How does that work?

• Assembler decides where to put code and variables (at two fixed addresses in

simulator). Assembler then builds a “symbol table” mapping names to

addresses and uses it to fill in operands of la, branch and jump instructions.

Slide 14

Assembling — Directives

• Assembler directives (starting . in MIPS) tell the assembler — something.

Examples include .word to define a 4-byte constant, .end.

• Two worth additional mention here — .text, .data:

Typically output includes “text (code) segment” consisting of

machine-language instructions and “data segment” containing fixed/static

data.

.text, .data tell assembler which of the these to use for following code.

7



CSCI 2321 February 20, 2019

Slide 15

Linking

• For small programs assembling the whole program works well enough. But if

the program is large, or if it uses library functions, seems wasteful to

recompile sections that haven’t changed, or to compile library functions every

time (not to mention that that requires having their source code).

• So we need a way to compile parts of programs separately and then

somehow put the pieces back together — i.e., a “linker” (a.k.a. “linkage

editor”).

• To do this, have to define a mechanism whereby programs/procedures can

reference addresses outside themselves and can use absolute addresses

even though those might change.

Slide 16

Linking, Continued

• How? define format for “object file” — machine language, plus additional

information about size of code, size of statically-allocated variables, symbols,

and instructions that need to be “patched” to correct addresses. Format is

part of complete “ABI” (Application Binary Interface), specific to combination

of architecture and operating system.

So, output of assembler is one of these, including information about symbols

defined in this code fragment and about unresolved (external) references.

8



CSCI 2321 February 20, 2019

Slide 17

Linking, Continued

• Linker’s job is then to combine object files, merging code and static-variable

sections, resolving references, and patching addresses. Result should be

something operating system can load into memory and execute —

“executable file”.

• (Note in passing that this is “static linking”, as opposed to “dynamic linking”.

More about the latter soon.)

Slide 18

Loaders

• So what’s left . . .

• “Executable file” contains all machine language for program, except for any

dynamically-linked library procedures. What does the operating system have

to do to run the program? Well . . .

• Obviously it needs to copy the static parts (code, variables) into memory.

(How big are they?) Also it needs to set up to transfer control to the main

program, including passing any parameters. And what about those absolute

addresses?

• So as with object code, executable files contain more than just machine

language. File format, like that of object code, is part of ABI.

(More soon.)

9



CSCI 2321 February 20, 2019

Slide 19

Minute Essay Answer

• None — quiz.

10


