
CSCI 2321 February 22, 2019

Slide 1

Administrivia

• (Remember that if you can’t turn in a finished homework on time, you have

the option of turning a preliminary version on time and a revision as soon as

you can. No late penalty in that case.)

Slide 2

From Source to Execution — Big Picture Revisited

• Goal is to be able to translate programs written in a HLL or assembler

language into something that the operating system can load into memory and

run.

• Usually want this to be done in a way that supports separate

compilation/assembly of source code files, possibly in different languages.

(That sort of implies support for library functions, since a “library” basically

consists of previously-compiled code.)

• A lot of the software conventions we’ve looked — how procedures are called,

memory use, etc. — exist to make this work.

1

CSCI 2321 February 22, 2019

Slide 3

Semi-Sidebar: Compilers Revisited

• In principle compilers all generate assembly-language code that follows these

conventions, so it should be possible to call a function in one language from

another language. (They both compile to object code, right?)

• In practice some details can get messy, e.g.:

C lays out 2D arrays in “row-major” order (by rows), Fortran in column-major

order.

Some language support overloading of functions. How to implement that

might involving having a different name (think MIPS label) for each version

(e.g., “name mangling” in C++ — Wikipedia article seems good).

Usually, though, calling one language from another can be made to work.

Slide 4

Assembling Revisited

• Job of the assembler is to produce “object code”. Details vary among

platforms (“platform” here means combination of architecture and operating

system).

• Keeping in mind the big picture, object code needs to contain:

– Machine language for instructions, typically collected into “code segment”,

a.k.a. “text segment”.

– Binary representation of any variables (.word, .asciiz, etc., in

MIPS), typically collected into “data segment”.

– Something that will make it possible for code in one object file to reference

a global symbol (procedure or data) in another.

2

CSCI 2321 February 22, 2019

Slide 5

Assembling, Continued

• Even without the complication of referencing a label in another object file,

though . . .

• You know that MIPS assembly language has a notion of labels that let you

branch or jump to another place in the code, or load the address of a variable.

These are absolute addresses so depend on where in memory the program is

loaded. How can that work?

Slide 6

Assemblers — How They (Could?) Work

• (I admit I haven’t looked at actual code for an assembler, but the job seems

straightforward.)

• First start by establishing starting addresses for code and data segments.

• As each instruction or data declaration is encountered, add to appropriate

segment and increment “next” address (by 4 for instructions, by size of data

for data).

(NOTE that labels themselves occupy no space, but pseudoinstructions might

expand to multiple real instructions.)

Also build “symbol table” of labels versus addresses and list of references to

labels, and make note of any declared as “global”.

3

CSCI 2321 February 22, 2019

Slide 7

Assemblers — How They (Could?) Work, Continued

• Resolve references to labels using symbol table and “patch” instructions

accordingly. (Or maybe you make one pass through the code that only builds

the symbol table and another that actually converts instructions. I think two

passes are needed in any case.)

Also keep track of any uses of absolute addresses, since these depend on

where in memory the program gets loaded.

• When done, should have text and data segments, symbol table, and list of

instructions that aren’t right yet (because they reference external symbols or

use absolute addresses).

Output all of that; format is part of platform’s ABI.

Slide 8

Linkers — How They (Could?) Work

• Job of linker is combine one or more object files into “executable file” —

something the operating system can load into memory and execute.

What does that imply . . .

• Instructions that aren’t complete yet because they reference procedures or

data in another object file need to be corrected.

• Instructions that aren’t complete/correct because they use absolute

addresses need to be corrected.

Note that absolute addresses could still not be right, if it’s not known at link

time where in memory the program will be loaded.

4

CSCI 2321 February 22, 2019

Slide 9

Linkers — How They (Could?) Work, Contined

• So linker must do some things:

• Merge code segments, data segments.

• Merge tables of “global” symbols into combined symbol table.

• Use it to resolve unresolved references.

• Modify any absolute addresses, keeping track of the instructions that use

them if they will need to be changed when the program is loaded.

• Output all of that; format is part of platform’s ABI.

Slide 10

Sidebar: Dynamic Linking

• In earlier times linkers behaved as just described, linking in all needed library

code. But this may not be efficient: It may result in pulling in code for unused

procedures. Also, if the system supports concurrent execution of multiple

threads/applications/etc., might be nice to allow them to share a single copy

in memory of library code.

• “Dynamic linking” supports this, and has the side benefit(?) of allowing

updates to library code without relinking all applications that use it. (Is this

always a benefit?)

• Implementations have different names (“DLL” in Windows, “shared library” in

UNIX/Linux). How it works is similar: At link time, link in “stub” routine that at

runtime locates the desired code, loads it into memory (if necessary!) and

patches references.

5

CSCI 2321 February 22, 2019

Slide 11

Loaders — How They Work (Textbook)

• Nice explanation in Appendix A. Summary on p.129.

• Operating system (loader) must:

• Read executable file to get sizes of text and data segments.

• “Create address space” big enough for text, data, and stack segments.

(Details vary by O/S.)

• Initialize text and data segments from executable file.

(Appendix doesn’t mention this, but if the program isn’t always loaded at the

same address, somewhere in here any references to absolute addresses

need to be modified.)

Slide 12

Loaders — How They Work, Continued

• Set up registers — stack pointer, global pointer, etc.

• Push any arguments to program onto stack. (Think command-line

arguments?)

• Jump to start-up code that copies arguments to registers and calls program’s

main(). On return, makes a system call to terminate program.

• Note in passing that code invoked by “system calls” is not part of the program;

the syscall instruction jumps to code in the O/S’s part of memory.

6

CSCI 2321 February 22, 2019

Slide 13

From Source to Execution in SPIM

• SPIM combines assemble, link, and load steps:

Assembles (in some way that lets it show source code lines).

Loads resulting object code into memory. Can load more than one source file,

in which case it (in principle) does a link step to combine them.

• Always loads into memory at the same address, right after some code that . . .

This is the start-up code just mentioned: Remember parameters to C’s

main()? argc, argv? and there’s an optional third one, a list of

environment variables. This sets that up. (I’m not sure where values come

from!)

• IMO, called main should start by pushing $ra onto stack, end by popping it

off and using jr to return to SPIM code.

(Many examples online don’t do that. Not sure why not!)

Slide 14

Linking — Example

• Textbook presents an example starting on p. 127. Some details seem a bit

murky, so let’s work through it . . .

• One source of possible confusion is the handling of lw and sw instructions,

which apparently . . .

7

CSCI 2321 February 22, 2019

Slide 15

lw, sw Revisited

• Strictly speaking, these instructions specify a memory address using a

register and a fixed displacement.

• However, seems useful to be able to be able to load and store from address

specified via label. Assembler could support that . . .

Slide 16

lw, sw With Labels — SPIM Way

• SPIM apparently defines pseudoinstructions for lw and sw. Based on some

experiments . . .

• Just referencing a label, e.g.,

lw $t0, A

assembles into an lui to put the top 16 bits of the address of SPIM’s data

segment into $at and then a lw that uses $at for the register and the

offset to A as the displacement (calculated using symbol table).

(Try it!)

(To me it seems wrong not explicitly set the low 16 bits of $at as well, but

observation says those are always zero.)

8

CSCI 2321 February 22, 2019

Slide 17

lw, sw With Labels — SPIM Way, Continued

• Referencing a label and a register, e.g.,

lw $t0, A($t1)

assembles similarly, except that the lui to set $at to the address of the

data segment is followed an addu (unsigned add) to add the contents of

$t1. Note that if $t1 is an index into an array of “words” this won’t do what

you might want.

Slide 18

lw, sw With Labels — Textbook’s Way

• The textbook’s example presupposes a different scheme:

• Register $gp points into the data segment, at an address that will allow

addressing as much of the data segment as is possible using a 16-bit signed

value (which is what displacement is in lw and sw).

(I.e., $gp plus the most negative value you can get with 16 bits points to the

start of the data segment.)

• lw and sw are assembled into code that uses $gp, e.g.,

lw $t0, X

is assembled into

lw $t0, D($gp)

where D is the displacement from $gp to X, calculated during linking.

9

CSCI 2321 February 22, 2019

Slide 19

Linking — Textbook Example Continued

• What happens at link time — reasonably well explained on p. 128, except for

computing displacements for lw and sw:

• Goal is to come with up displacements, call them DX and DY, that when

added to address in $gp (specified as 0x10008000) gives addresses of

X and Y.

(We know what those are based on positioning data segments one after the

other starting at 0x10000000.)

• Some simple algebra says that, e.g.,

DX is 0x10000000 - 0x10008000

Calculating and writing result in 16-bit two’s complement form gives their

result.

Slide 20

Homework 4 — Example of Assembling / Linking

• For the written problem in Homework 4, I ask you to do something along the

same lines, but writing things in a way that I think makes more sense.

• Given two fairly meaningless source-code files, work through steps . . .

• (Files with code etc. linked from homework writeup.)

10

CSCI 2321 February 22, 2019

Slide 21

Minute Essay

• Questions?

11

