
CSCI 2321 February 25, 2019

Slide 1

Administrivia

• Reminder: Quiz 3 Wednesday. Topics from chapter 2. (Some possibility this

won’t happen and the next quiz will be after the first exam. I will send e-mail

tomorrow one way or another.)

• If you’re watching the video lectures, don’t forget to send me an answer to the

minute essay. Only half the students have done that for 2/15 (and they’re

mostly saying it was good review).

• If you didn’t do well on Quiz 2 (and several people didn’t), don’t panic: I drop

the lowest quiz score. But it should be a warning that you might not be

understanding?

Slide 2

Video Lecture Follow-Up

• Most people who’ve viewed the one for 2/22 said they found it helpful. (Good!

I hoped it would be.)

1



CSCI 2321 February 25, 2019

Slide 3

Linking — Offsets, Addresses, Etc.

• One person asked about which instructions need to be included in “relocation

information”. Criterion to use is “can I translate this instruction completely and

correctly without knowing where in memory something (code or data)

resides?”

So, jal? jr? la? lw (the real instruction)?

• One person asked about offset versus address. Offset is relative to start of

the segment (text/code or data); address is memory address and depends on

where in memory the segment is loaded.

Slide 4

MIPS Assembler Directives for Data

• One person asked about .word. Examples may help:

A: .word 100

B: .word 1, 2

C equivalent (assuming 32-bit ints):

int A = 100;

int B[] = {1, 2};

2



CSCI 2321 February 25, 2019

Slide 5

Arithmetic Overflow

• One person asked about the factorial example and why it just quietly gives

wrong results for larger inputs (and they don’t even have to be very large!).

• Compare to what happens if you write an equivalent program in a high-level

language . . .

• When result-in-process gets too big to fit into available space (32-bit register

here), two options: Hardware can signal exception, or it can just drop

high-order bits. Result can look negative, or it can just be wrong.

Slide 6

Arithmetic Overflow, Continued

• “Signal exception”? Yes. We’ll talk more about this later, but possible to build

hardware that detects overflow and does something. (Apparently SPIM

doesn’t do this.)

• But since many programming languages ignore overflow, often instructions

have signed form that checks and unsigned form that doesn’t (e.g., addu

versus add).

• Really careful programmers put in their own checks for overflow. May actually

be easier in assembly language: mult instruction generates 64-bit result in

special-purpose registers lo and hi.

3



CSCI 2321 February 25, 2019

Slide 7

Compiling Revisited

• As previously mentioned, compilers are big and complicated partly because

they try to generate efficient code (while, one hopes, preserving the

program’s meaning!).

• As an example: Textbook goes into some detail about compiling C code to

loop through an array, showing a version that uses indices and one that uses

pointers. A “good” compiler will likely generate the same code for both.

Can test this with gcc: -S generates (x86) assembler, so we could write it

both ways, compile to assembler, and compare. Same if compiled with -O.

• Note in passing that compiler optimizations can play havoc with attempts to

time things: C compilers are allowed to just skip any code that doesn’t have

an observable effect (i.e., result isn’t printed or otherwise used). (In practice

they may or may not.)

Slide 8

SPIM Tips

• Debugging MIPS assembly programs with SPIM can be tedious. I find the

command-line version easier to work with. Some tips:

Can set a breakpoint with breakpoint. Only works with labels defined as

global symbols.

Can print values of variables, but again only if defined as global symbols.

(Example / demo?)

• SPIM also useful as a way to check work, e.g., translating assembly to

machine language, or assembling / linking.

(Example / demo?)

4



CSCI 2321 February 25, 2019

Slide 9

MIPS Programming — Another Example

• Try revising the factorial example (under “sample programs” on the course

Web site) to use a loop rather than recursion.

• Try this individually or in pairs. When/if you have something, copy to my

directory:

chmod go+r pgmname.s

cp -p pgmname.s

/users/bmassint/TEMP2321/your username

Slide 10

Minute Essay

• Was it helpful to do a practice problem in class like this?

5


