
CSCI 2321 March 20, 2019

Slide 1

Administrivia

• (What happened to the planned video lecture from Monday? well, getting

midterm grades in . . . I think what will make sense is to do one for Friday, and

use it for detailed examples of some of today’s topics.)

• (Next homework coming soon. I’ll send e-mail.)

• Everything graded; I also e-mailed each of you a grade summary.

If you didn’t turn in one or more assignments, I’m willing to accept them late,

for part credit, as long as you haven’t looked at a sample solution.

• One student asked about the code I wrote in class to check for overflow in

computing factorial. I’ve posted that to the course Web site under “sample

programs”.

Slide 2

Homework 4 Essays

• About working through some details of assembling and linking:

Several people commented that it was tedious; several said it was somehow

satisfying; some said both (!).

Several people said the problem seemed daunting at first but video lecture

helped (good to hear!).

1

CSCI 2321 March 20, 2019

Slide 3

Homework 3 Programming Problem Essays

• Several people commented that actually having to write programs that can be

run helped them understand. That was my goal! Several commented that my

examples helped. Good; they’re meant to!

Several people mentioned spending a lot of time on the problem. Not my

goal, but debugging in SPIM is a huge pain.

• Several people mentioned that the meaninglessness of the code in the

textbook problem was — unsatisfactory? Agreed. “My bad”, maybe.

• One person said it was interesting how the assembler reserves one register

for pseudoinstructions. Maybe, but — “principle of least surprise”

Slide 4

Homework 4 Programming Problem Essays

• Several people mentioned being tripped up by registers being reused when

making a recursive call. “Indeed”?

• Several people said this one also helped them understand better, particularly

about how procedure calls work. Several said it was not particularly tough

given the factorial example to work from. That was my intent! Others said

debugging was hard/painful. Agreed.

• Several people said they enjoyed the assignment. (Good to hear!)

2

CSCI 2321 March 20, 2019

Slide 5

Numbers and Arithmetic — Overview

• Most architectures these days represent integers as fixed-length two’s

complement binary quantities.

(But that there are/were architectures that support variable-length “packed

decimal”, with each byte storing representations of two base-10 digits.)

• Most architectures these days represent real numbers using one or more of

the formats laid out by the IEEE 754 standard. Based on a base-2 version of

scientific notation, plus special values for zero, plus/minus “infinity”, and “not a

number” (NaN).

(But historically there have been architectures that could represent fractional

quantities using base-10 “fixed-point” notation, and this may be coming back.)

Slide 6

Numbers and Arithmetic — Overview, Continued

• Arithmetic can (in principle anyway) be done using same techniques taught to

grade-school children.

(Well, I hope still taught? Fans of classic science fiction may know Asimov

short story “The Feeling of Power” (1958?), which posits a world in which no

humans can do simple arithmetic without a computer. But he didn’t predict

how pervasive and affordable computers would become!)

3

CSCI 2321 March 20, 2019

Slide 7

Binary Versus Decimal (Review)

• In decimal (base 10) notation, each digit is multiplied by a power of 10. Same

idea for binary (base 2), but using powers of 2.

• So, converting from binary to decimal is easy (if tedious), working from

definition.

Brief example:

10112=(8+2+1)10=1110

Slide 8

Binary Versus Decimal (Review), Continued

• Converting from decimal to binary? Repeatedly divide by 2 and record

remainders . . .

• Why does this work? Could describe this as a recursive algorithm for

computing bits(n):

– Base case is n<2; trivial.

– For recursive step, divide n by 2 to get quotient q and remainder r. Then

n=2q+r, and:

Last bit of bits(n) should be r.

Remaining bits are bits(q), left-shifted by 1.

4

CSCI 2321 March 20, 2019

Slide 9

Other Number Bases (Review)

• Binary is useful for showing real internal state but not very compact. Decimal

is compact but not so easy to convert to/from binary.

• Easy to convert binary to/from a base that’s a power of 2. Hence the use of

“octal” (base 8) and “hexadecimal” (base 16). For the latter, we need more

than 10 digits, so to make the idea of positional notation work (tangent — very

powerful idea! compare to Roman numerals) we use “A” through “F”

(uppercase or lowercase).

Conversion is based on some simple if tedious algebra: Group bits, right to

left, in groups of 3 (for octal) or 4 (for hexadecimal), and factor out a power of

8 or 16 from each group.

• Note that we can also convert directly to/from decimal, much as we did for

binary.

Slide 10

Binary Versus Decimal (Review?), Continued

• Terminology: “Least significant” and “most significant” bits.

• Seems like there would be one obvious way to store the multiple bytes of one

of these in memory, but no: “big endian” versus “little endian” (names from

Gulliver’s Travels).

(Sample program show-int.c shows which one x86 apparently uses.)

5

CSCI 2321 March 20, 2019

Slide 11

Representing Integers (Review)

• Representing non-negative integers is straightforward: Convert to binary and

pad on the left with zeros.

• What about negative integers?

• Could try using one bit for sign, but then you have +0 and -0, and there are

other complications.

• Or . . . consider analogy of a car odometer: Representable numbers form a

circle, since adding 1 to largest number yields 0.

Slide 12

Representing Integers (Review), Continued

• Could implement the car-odometer idea in binary, and then choose where to

“cut the circle” (between smallest and largest):

– Between 0 and all ones — unsigned integers.

– Between largest number with 0 as the MSB and smallest number with 1 as

MSB — “two’s complement” signed integers.

• Note: With this scheme +1/-1 moves us “around the circle” — nothing special

needed for negative numbers.

6

CSCI 2321 March 20, 2019

Slide 13

Representing Integers (Review), Continued

• Note: If we have n bits, adding 2n to x gives us x again. Leads to an easy

way to compute −x: Compute 2n−x, and note that

2n−x = (2n−1)−x+1

which is very easy to compute . . .

• (This is the familiar(?) method of “flipping the bits” and adding 1. Not magic!)

Slide 14

Signed Versus Unsigned

• If we have n bits, can use them to represent signed values in. (What range?)

Or can use them to represent non-negative values only (“unsigned values”).

(What range?)

• Many MIPS instructions have “unsigned” counterparts — addu, addiu,

sltu, etc.

• Example: Suppose we have

0x00000000 in $t0

0xfffffff2 in $t1

What happens if we execute slt $t2, $t0, $t1?

What happens if we execute sltu $t2, $t0, $t1?

(Same bits, different interpretations!)

7

CSCI 2321 March 20, 2019

Slide 15

Sign Extension (Review?)

• If we have a number in 16-bit two’s complement notation (e.g., the constant in

an I-format instruction), do we know how to “extend” it into a 32-bit number?

For non-negative numbers, easy.

For negative numbers, also not too hard — consider taking absolute value,

extending it, then taking negative again.

• In effect — “extend” by duplicating sign bit.

• (Note that not all instructions that include a 16-bit constant do this.)

Slide 16

Two’s Complement and Addition/Subtraction (Review)

• Addition in binary works much like addition in decimal (taking into account the

different bases). Note what happens if one number is negative.

• Subtraction could also be done the way we do in decimal. But could also

compute a−b as a+(−b), which makes for simpler hardware (more about this

soon).

8

CSCI 2321 March 20, 2019

Slide 17

Integer Addition/Subtraction and Overflow

• If adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.

• For unsigned numbers, how could we tell this had happened?

• How about for signed numbers?

Slide 18

Addition/Subtraction and Overflow, Continued

• Note that we can’t get overflow unless input operands have the same sign.

• If we add two positive numbers and get overflow, how can we tell this has

happened?

• If we add two negative numbers and get overflow, how can we tell this has

happened?

• (Figure 3.8 in textbook summarizes.)

9

CSCI 2321 March 20, 2019

Slide 19

Addition/Subtraction and Overflow, Continued

• When we detect overflow, what do we do about it?

• From a HLL standpoint: ignore it, crash the program, set a flag, etc.

• To support various HLL choices, MIPS architecture includes two kinds of

addition instructions:

– Unsigned addition just ignores overflow.

– Signed addition detects overflow and “generates an exception” (interrupt):

Hardware branches to fixed address (“exception handler”), usually

containing operating-system code to take appropriate action.

Slide 20

Addition/Subtraction and Overflow, Continued

• C ignores overflow (not sure why!). So a real C compiler for MIPS would use

unsigned arithmetic.

• Examples in the textbook don’t do this, perhaps to keep things simpler. SPIM

also apparently ignores overflow.

10

CSCI 2321 March 20, 2019

Slide 21

Implementing Arithmetic — Preview

• In next chapter, start talking about hardware design (though still at a

somewhat abstract level).

• For now, may be useful to know that the low-level building blocks are entities

that can evaluate Boolean expressions(!).

• So for example, can implement addition by first making a “one-bit adder” that

maps three inputs (two operands and carry-in) to two outputs (result and

carry-out), and then chaining together 32 of them. (Figures B.5.2, B.5.7.)

• Multiplication and division, however, may need to be more complex, involving

multiple steps and control-flow logic.

Slide 22

Multiplication

• (First discuss simple “humans can understand this” / proof of concept

approach.)

• As with addition, first think through how we do this “by hand” in base 10.

(Example, briefly.)

• Can do the same thing in base 2, but it’s simpler, no? computing the partial

results is easier. This gives textbook’s first algorithm, shown in figures 3.3

through 3.6. (Example another time.)

Note also: Overflow could be a lot more here, so normally compute a result

twice as big as the inputs.

11

CSCI 2321 March 20, 2019

Slide 23

Multiplication, Continued

• Approach just discussed works and is implementable, but it’s slow.

• Can do better by computing partial products in parallel and then combining

them in a way that also takes advantage of obvious(?) opportunity for

parallelism. Impractical when chips were less complex; became feasible

when hardware designers had more transistors to work with!

(A few more details in textbook, if you’re curious. Reasonable summary in

Figure 3.7.)

Slide 24

Multiplication, Continued

• In MIPS architecture, 64-bit product / work area kept in two special-purpose

registers (lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rs1, rs2

mflo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rs1, rs2

• Note, however, that a “smart” compiler might turn some multiplications into

shifts. (Which ones?)

12

CSCI 2321 March 20, 2019

Slide 25

Division

• (Again, first discuss simple “humans can understand this” / proof of concept

approach.)

• As with other arithmetic, first think through how we do this “by hand” in

base 10. (Example, briefly.)

• Can do the same thing in base 2; this gives the algorithm shown in textbook

figures 3.8 through 3.10. (Example another time.)

Slide 26

Division, Continued

• Here too, approach works but is slow. Speeding it up . . .

• Not as simple as with multiplication (is it apparent why?). Textbook says

current hardware can still take some advantage of parallelism by computing

some things speculatively. More in textbook if you’re curious!

13

CSCI 2321 March 20, 2019

Slide 27

Division, Continued

• In MIPS architecture, 64-bit work area for quotient and remainder kept in

same two special-purpose registers used for multiplication (lo and hi).

After division, quotient in lo and remainder in hi. Two (or more) instructions

needed to do a division and get result:

div rs1, rs2

mflo rq

mfhi rr

Assembler provides a “pseudoinstruction”:

div rdest, rs1, rs2

• Note, however, that a “smart” compiler might turn some divisions into shifts.

(Which ones?)

Slide 28

Minute Essay

• How did the exam compare to your expectations? with regard to length,

difficulty, topics . . .

• (And if you feel inclined to tell me how you spent your spring break?)

14

