
CSCI 2321 April 15, 2019

Slide 1

Administrivia

• Reminder: Homework 7 due today, Homework 8 Wednesday. Late penalties

will apply if you can’t turn them in on time, but will be reduced. (Many

students seem to be busy?)

• Reminder: Quiz 6 Wednesday. Likely topic is pipelining. Probably high-level

conceptual questions.

Slide 2

Minute Essay From Last Lecture

• Many interesting and thoughtful answers!

1



CSCI 2321 April 15, 2019

Slide 3

Pipelining — Key Ideas

• Instruction execution divided into stages.

• Full circuit partitioned into corresponding stages, with “pipeline registers”

between them.

• All stages (can be) active at the same time, each operating on a different

instruction.

• Each instruction moves through the pipeline.

• Performance improvement is in throughput rather than time for each

instruction.

• “Hazards” complicate matters.

Slide 4

Pipelined Implementation — Some Details

• Figures 4.36 through 4.40 show some details of how this implementation

works for different groups of instructions. Textbook’s notation is that state

elements whose right side is highlighted (blue) are being read, and those

whose left side is highlighted are being written.

• Note that we now spot a flaw in the design: At the point where we need “which

register to write to?”, it’s no longer correct. Figure 4.41 shows how to correct.

2



CSCI 2321 April 15, 2019

Slide 5

Pipelined Implementation — What’s Left

• Need to be explicit about exactly what’s needed for those “registers” between

stages, but should sort of be common sense(?).

• Need to generate control signals, as in single-cycle implementation. Note that

some of them must be saved in those interstage registers. Figure 4.51 shows

result.

• Need to deal with data and control hazards. (Structural hazards don’t exist for

MIPS ISA, assuming we have separate instruction/data memories, as in the

single-cycle implementation.)

Textbook shows many details, interesting but a bit much for this course. But

good to get key ideas . . .

Slide 6

Data Hazards — Overview

• Some kinds of data hazards can be addressed by providing additional paths

for data to flow (“forwarding”). For others, have to stall the pipeline.

(Figures 4.53, 4.56.)

• “Stall the pipeline”? can get that effect by not changing registers or memory,

and not changing program counter (so in effect the instruction being fetched is

fetched again), and/or by inserting a nop instruction on the fly.

• Smart compilers can (at least sometimes) avoid stalls by reordering

instructions.

3



CSCI 2321 April 15, 2019

Slide 7

Control Hazards — Overview

• Several ways to deal with control hazards:

• Could just stall pipeline. (Apparently not done.)

• Or could implement “delayed branches” — always execute instruction after

the branch. (Look at figures and confirm that this will work.) Apparently what

MIPS does? (So SPIM not quite accurate implementation of ISA.) Annoying if

writing assembly-language programs, but few people do, and compilers can

cope?

• Still other ways (used in other architectures?) involve “flushing” in-progress

instructions (before they change anything!), possibly combined with various

schemes for predicting branch outcome. Details no doubt interesting, but not

trivial!

Slide 8

Exceptions

• As in higher-level programming languages, situations at this level where you

want to bail out of the normal flow of control because something has gone

wrong (e.g., arithmetic overflow).

• Further, situations in which you want to alter normal flow of control to deal

with something happening outside processor (e.g., I/O device has finished

something you previously asked it to do). (You could check it periodically, yes,

but usually that’s inefficient.)

• Some architectures distinguish between “exceptions” (first case) and

“interrupts” (second case), but all kind of the same thing, so MIPS doesn’t; all

“exceptions”.

• What should happen on exception? Several possibilities . . .

4



CSCI 2321 April 15, 2019

Slide 9

Exceptions, Continued

• Some exceptions errors from which we can’t reasonably recover (e.g.,

program tried to execute something not an instruction).

What should happen then? probably terminate the offending program.

• Other exceptions errors from which recovery is possible, or things that have

nothing to do with currently-running application (e.g., signal from I/O device).

What should happen then? operating system should do something and then

return to interrupted application.

• Exception/interrupt mechanism turns out to also be useful as a way for

applications to request operating-system services.

Slide 10

Exceptions — Hardware Versus Software

• Hardware must save current PC (with a caveat) and transfer control to fixed

location(s) with an indication of cause of exception.

• Code at fixed location(s) must “do the right thing” for the exception, as

described previously. Normally this code is part of operating system.

• Caveat: Pipelining complicates exception processing — must allow

instructions prior to the interrupted one to complete, complete or flush the

interrupted one, etc. Textbook has (some of) details.

5



CSCI 2321 April 15, 2019

Slide 11

Hardware for Exceptions

• So, on exceptions (any type) need to bypass normal flow of control and

branch to — somewhere, and fixed location(s) seems reasonable(?).

• Also need some way of indicating type of exception, plus address of

interrupted instruction (in case we need to go back).

Slide 12

Hardware for Exceptions, Continued

• MIPS architecture uses two registers

– cause of exception (“Cause register”)

– address of interrupted instruction (EPC)

and always transfers control to same place (where there should be code that’s

part of operating system).

(Compare Figures 4.65, 4.66.)

(Try, in SPIM, a program that forces an exception — sw to an invalid address

seems to work.)

• Other architectures transfer control to different places depending on type of

exception — “vectored interrupts”.

6



CSCI 2321 April 15, 2019

Slide 13

Minute Essay

• None — quiz.

7


