
CSCI 2321 April 17, 2019

Slide 1

Administrivia

• Reminder: Homework 8 due today.

• Reminder: Exam 2 next Wednesday. Review sheet posted on course Web

site.

Solutions to quizzes linked from “lecture topics” etc. page.

Solution to homeworks to be shared with you via Google Drive. I’m trusting

you not to look at sample solutions if you haven’t yet turned in an assignment

and plan to sometime!

• I’m finishing up grading of Homework 6 and hope to finish before I leave

today. I’ll put them in my mailbox for you to pick up?

I’ll try hard to grade by Monday anything turned in to me before Friday.

Slide 2

Exceptions — Review/Recap

• Useful as a way of dealing with errors.

• Some might be recoverable (e.g., arithmetic overflows).

• Others may not be (e.g., attempt to execute something that’s not an

instruction).

1



CSCI 2321 April 17, 2019

Slide 3

Interrupts — Review/Recap

• Useful for interacting with I/O devices, where typically operations are slow

compared to processor speeds, so it makes sense to start one and then let

device interrupt whe it’s done.

• Also useful for sharing processor among concurrently-executing threads or

processes, where it often makes sense to “time-slice”, i.e., allow each one to

run for limited time before giving another a turn.

Slide 4

Exceptions and Interruptions — Recap/Review

• In both situations, what seems to make sense: Transfer control to operating

system, which can decide what to do.

• Mechanism for doing this: Hardware saves PC of next instruction to execute

and possibly something indicating type of exception/interrupt, then transfers

control to fixed location. Can be the same location for all types, or different

locations for different types.

2



CSCI 2321 April 17, 2019

Slide 5

Exceptions/Interruptions and Operating System Services
— Background

• In a general-purpose system able to execute more than one program at a

time, there are things these application programs should not be allowed to do

for themselves. Instead there should be a central authority — an operating

system.

Examples include communicating with I/O devices, requesting memory, etc.

• To really make this work reliably, need to make sure only operating system

can do these things. How? . . .

Slide 6

Operating System Services — Dual-Mode Operation

• Many processors have notion of two modes of operation: “privileged” one for

doing O/S stuff, “unprivileged” one for regular applications.

• Special-purpose register (akin to PC) says which mode currently in effect.

• Attempts to do privileged operations while in unprivileged mode generate

exceptions. Obviously(?) can’t just let application programs set this bit! How

then can application programs request O/S services?

3



CSCI 2321 April 17, 2019

Slide 7

Requesting Operating System Services

• Typical solution:

• Have application program execute instruction that generates

exception/interrupt, with something indicating which service requested. (In

MIPS, syscall.)

• Have hardware set “privileged” bit when it transfer control to O/S. O/S

performs service, clears “privileged” bit, returns to application.

• Same idea works for all exceptions/interrupts.

Slide 8

Digression — Drawing Figures Programmatically

• As I was preparing a sample solution for Homework 6 in a previous year, I got

interested in whether there wasn’t some nice tool to do this programmatically

— rather than me drawing a bunch of gates with a drawing program and

connecting them, well, it just seemed like something a computer could help a

lot with, and similarly with the state machines.

• Being a LATEX fanatic, I looked for LATEX-based approaches, and found . . .

4



CSCI 2321 April 17, 2019

Slide 9

Digression — Drawing Figures Programmatically

• . . . something called TikZ (short for German for “TikZ is not a drawing

program). There’s quite a learning curve, but the results can be really nice.

Examples on “sample programs” page.

(I got carried away and spent part of that summer drawing some of the figures

in Chapter 4 with it! And I think it really is easier for me now to produce

nice-looking diagrams like the ones in Appendix B.)

• Take-home message, maybe: LATEX is really good in general at converting

“logical markup” into something more graphical. That this can apply to turning

a logical(?) representation of a figure into something graphical — maybe

surprising, maybe not? Other tools could work the same way (and maybe

some do)?

Slide 10

Minute Essay

• None — quiz.

5


