
CSCI 2321 January 22, 2020

Slide 1

Administrivia

• Homework 1 posted; due in a week. Note that these are not programming

problems so I’m asking that they be turned in on paper rather than e-mail.

• My office hours posted (on my “home page”). If they don’t work for you, keep

in mind that I’m very willing to answer questions by e-mail. I try to respond

promptly to questions; you can help me do that by putting “question” in your

subject line.

Slide 2

Recap/Review

• Last week I talked a little about what the course is about and how that fits into

an overall view of computer systems.

• Next topic is a rather abstract discussion of hardware (mostly included

because the textbook includes it).

• From there we’ll talk a little more about what’s “below” source code.

• Then we’ll talk some about ways of measuring performance.

1



CSCI 2321 January 22, 2020

Slide 3

“Classical Components” of Hardware

• Textbook discusses computer-system hardware in terms of five “classical

components”:

– Input and output devices (keyboard, display, etc., etc.).

– Memory (meaning main memory, a.k.a. RAM, not disk).

– Datapath and control — which together make up processor. (Much more

later about why two components.)

• Two other components that are important but don’t fit neatly into this scheme:

– Storage devices (e.g., disk). (Often called “memory”, especially by the

nontechnical but increasingly by everyone. But in my usage, no.)

– Network interfaces.

Slide 4

Abstraction

• Idea of abstraction used over and over in CS, Goal is often to “manage

complexity” by dividing big complicated problem into manageable parts.

Layered abstractions especially useful for that.

• Software example: If designing an online-shopping application, you might

design in terms of a rather abstract “shopping cart”, and think later or

separately about how to implement the abstraction (e.g., with a collection data

type). Details of implementation could be changed without affecting top-level

design.

• Same idea can be used in hardware, for the same reasons.

2



CSCI 2321 January 22, 2020

Slide 5

Abstraction in Hardware — ISA

• Instruction set architecture (ISA or architecture): a definition/specification of

how the hardware behaves, detailed enough for programming at

assembly-language level.

E.g, “x86 architecture”, “MIPS architecture”, “IBM 360 architecture”.

• Implementations of an architecture: actual hardware that behaves as defined.

Can have many implementations of an architecture, allowing the same

program executable to run on (somewhat) different hardware systems.

E.g., Intel chips, IBM 360 family of processors.

Slide 6

Abstraction in Hardware — ABI

• “Application Binary Interface” (ABI) is a somewhat broader term.

• Includes ISA and and other details of how programs are translated into

something the computer can execute, how they interact with their

environment. (A bit more about this later.)

3



CSCI 2321 January 22, 2020

Slide 7

Compiling and Executing Programs — Recap/Review

• Several ways source code can be executed:

• Interpreted directly (e.g., shell scripts).

• Compiled to intermediate form, interpreted/executed by

possibly-language-specific runtime system (e.g., Scala and Java).

• Compiled to “native code” (machine language), usually producing

“executable”, and executed. (We will focus on this one — referred to as

“compiling to native code”.)

Slide 8

Running Executable Files — Overview

• What a processing element can do is fetch machine-language instructions

from memory (RAM) and execute them, one at a time. That’s it! (Caveat:

Conceptually this is what’s going on, though current processors include

performance enhancements that mean it’s something of a simplification.

Good enough for now!)

• So to execute a program: Somehow get machine-language instructions into

memory and transfer control to a starting instruction.

• Most (not all, but most!) platforms involve an operating system. which reads

executable file from storage device into memory and transfers control to its

first instruction.

4



CSCI 2321 January 22, 2020

Slide 9

From Programs to Execution — Compiling, Assembling

• Source code translated into assembly language (symbolic representation of

machine language) via a compiler. Compilers can be quite complicated,

especially if goal is code that’s not only correct but also efficient. Worth noting

that all compilers for a platform generally follow some conventions that make

it easy for subprograms in different languages to call each other. Details are

part of ABI.

• Assembly language then converted to object code (machine language, plus

other information) via an assembler. Assemblers are much simpler!

• “Other information” in object code includes such details as information about

calls to library functions. Format of object code is part of ABI.

Slide 10

From Programs to Execution — Linking

• Linker combines object code from multiple sources, including libraries, to form

an executable file, which also consists of machine language plus other

information. In static linking, resulting machine language includes all library

code. In dynamic linking, some references to library code may get turned into

something that gets resolved when the program is started. (More about this

later.)

• Executable file’s “other information” includes program size, location of starting

instruction information about any references to library code not included in the

executable. Format of this file also part of ABI.

5



CSCI 2321 January 22, 2020

Slide 11

From Programs to Execution — Loading/Executing

• At runtime, operating system loads machine language from executable file,

resolves any calls to dynamically-linked library code, transfers control to

starting instruction.

• At that point, processor is executing machine language for program. Typically

application programs not allowed to do certain things (e.g., I/O) directly;

instead they make requests of operating system. Details of how they do that

and what services are available are also part of the ABI.

Slide 12

A Little About Integrated Circuits — Conceptual View

• Transistor — on/off switch controlled by electrical current. (Number of

transistors is what Moore’s law says doubles every two years.)

• Combine/connect a lot of transistors to get circuit that does interesting things

(e.g., addition). At least conceptually, circuits are built up from “logic gates” —

simplest are NOT, AND, and OR, pretty much same as Boolean algebra.

• Put a bunch of circuits together to get a chip / integrated circuit (IC). If lots of

transistors, VLSI chip.

6



CSCI 2321 January 22, 2020

Slide 13

A Little About Integrated Circuits, Continued

• Manufacturing process starts with a thin flat piece of silicon, adds metal and

other stuff to make wires, insulators, transistors, etc.

• Of course, this is all automated! Low-level chip designers use CAD-type tools,

which save designs in a standard format, which the chip designers

simulate/test with other software, and then send off to be fabricated. (These

days, at least some design is done more or less by programming, using a

notation that describes what the circuit does.)

• Typically make many chips on a wafer, discard those with defects, bond each

good one to something larger with pins to allow connections to other parts of

computer.

Slide 14

Defining Performance

• What does it mean to say that computer A “has better performance than”

computer B?

• Really — “it depends”. Some answers:

– Computer A has better response time / smaller execution time.

– Computer A has higher throughput.

• Trickier than it might seem to come up with one number that means

something!

7



CSCI 2321 January 22, 2020

Slide 15

Evaluating / Comparing Performance — Approaches

• Use the actual workload, on the actual hardware platform(s), and compare

times.

• Put together a representative simulated workload (“benchmark”); run and

compare times.

• Compare code size.

• Compare number of instructions per second (“MIPS” or “MFLOPS”, once).

Slide 16

Evaluating / Comparing Performance, Continued

• Alas, all the methods just mentioned are flawed in some way.

(In particular, paraphrasing someone whose name I don’t remember, “peak

MIPS is just the number you can’t go any faster than.”)

• Textbook chooses to focus in this chapter on “execution time”. Might not be

meaningful for comparing systems but seems like reasonable way to compare

processors at least.

8



CSCI 2321 January 22, 2020

Slide 17

Measuring Performance

• If we use execution time as criterion, how to measure?

• Wall-clock time seems fairest, since it includes

– Time for CPU to execute instructions.

– Any waiting for memory access.

– Any waiting for I/O.

– Any waiting for operating system.

• Is that easy to measure reliably / repeatably?

Slide 18

Measuring Performance, Continued

• No — to get repeatable measure of wall clock time, need an otherwise

unused system.

• So instead we could use “CPU performance” — amount of time CPU needs to

run program. Easier to measure, more consistent, and at least says

something about the processor.

• Even that, though, is not as simple as it might seem.

9



CSCI 2321 January 22, 2020

Slide 19

Defining Performance

• Textbook chooses to focus on CPU (processor) time, and say

PerformanceA

PerformanceB
= n

exactly when
Execution timeB

Execution timeA
= n

Slide 20

Sidebar: Clocking and Cycles

• Circuits in typical chip are “clocked” — all parts kept in synch by something

that ticks so many times per second. Each tick is a “clock cycle”. Each

instruction takes one or more cycles. More about this later.

• Clock frequency typically expressed (these days) in gigahertz (GHz, 109 ticks

per second).

10



CSCI 2321 January 22, 2020

Slide 21

Calculating Program Execution Time (CPU Only)

• CPU execution time for program X is given by

CPU cycles× clock cycle time

and then CPU cycles in turn is the product of count of instructions and cycles

per instruction.

• And then it might seem like we can say something meaningful about what

happens if we change one of these numbers — but only if all other things

remain the same, which might or might not be true!

Slide 22

Calculating Program Execution Time, Continued

• Starting from the basic equation

CPU cycles× clock cycle time

we can expand a bit to get

instruction count × cycles per instruction × clock cycle

• We can then come up with many variations — e.g., one that uses clock rate

rather than clock cycle time — based largely on consideration of units of

measure (e.g., clock cycle time is seconds per cycle, while clock rate is cycles

per second).

11



CSCI 2321 January 22, 2020

Slide 23

Calculating Execution Time — Example

• Given the following about some program P:

– On computer A, execution requires 2×109 instructions, Instructions take 3

cycles each, and clock rate is 1GHz (so cycle time is 1/109).

– On computer B, execution requires 1.5×109 instructions, instructions take

5 cycles each. and clock rate is also 1GHz.

• Calculate execution times for P . . .

Slide 24

Calculating Execution Time — Example Continued

• Execution times:

– On computer A, 2×109×3×10−9, i.e., 6

– On computer B, 1.5×109×5×10−9, i.e., 7.5

• So for P, A’s performance is 1.25 times as good as B’s (7.5/6).

12



CSCI 2321 January 22, 2020

Slide 25

Sidebar: Dimensional Analysis

• (Or at least I think that’s close to the term I want.)

• Idea here is to approach “word problems” in terms of units, treating them

almost like factors in multiplication and division. (Example is converting, say,

inches to cm by multiplying by 1 in the form 2.54cm/1in.)

• If the formula you propose to use produces the right units (e.g., seconds for

execution time), there’s at least a good chance it’s the right one.

Slide 26

Calculating Execution Time, Continued

• One factor in the basic formula is cycles per instruction. What if that isn’t the

same for all instructions?

• Common sense(?) may tell you . . .

• If different types of instructions need different numbers of cycles, have to do

something like a weighted sum. Usually instructions fall into one of a few

“classes”, each with a common number of cycles per instruction.

• So, compute times for each “class” of instruction and add. Would also allow

you to compute an average CPI.

13



CSCI 2321 January 22, 2020

Slide 27

Calculating Execution Time — Example Continued

• Suppose we change computer A so that there are two “classes” of

instructions, a class 2 in which instructions take 2 cycles and a class 4 in

which instructions take 4 cycles, and suppose 3/4 of all instructions are

class 2 while the other 1/4 are class 4.

• Now execution time is

(2×109×3/4)×2×10−9+

(2×109×1/4)×4×10−9

i.e., 5

• We can also compute average CPI (cycles per instruction) . . .

Slide 28

Calculating Execution Time — Example Continued

• Isn’t average CPI just 3? average of 2 and 4?

• One could define it that way, but more sensible is to also include information

about relative frequencies of the two classes of instructions:

• For a program with N instructions, first compute total number of cycles:

((N×3/4)×2)+((N×1/4)×4)

=N×2.5

and then divide by N to get average CPI of 2.5.

14



CSCI 2321 January 22, 2020

Slide 29

Parallelism (Hardware)

• Executive-level definition of “parallelism” might be “doing more than one thing

at a time”. In that sense, it’s been used in processors for a very long time, via

pipelining, and (in some high-performance processors) vector processing.

• For a (relatively!) long time, hardware designers were able to make single

processors faster using these and other techniques (e.g., reducing sizes of

things). In the mid-2000s, however, they ran out of ways to do that. But they

could still put larger numbers of transistors on the chip. How to use that to get

better performance?

Slide 30

Parallelism (Hardware), Continued

• All that time there were people saying we would hit a limit on single-processor

performance, and the only answer would be parallelism at a higher level —

executing multiple instruction streams at the same time.

• So . . . use all those transistors to put multiple cores (processing elements) on

a chip!

• Why wasn’t this done even earlier? because alas the “magic parallelizing

compiler” —- the one that would magically turn “sequential” programs into

“parallel” versions — has proved elusive, and (re)training programmers is not

trivial.

15



CSCI 2321 January 22, 2020

Slide 31

Parallelism (Hardware/Software)

• Multicore computers offer one kind of potential parallelism — “multithreading”.

• Networks of computers offer another — “message-passing”.

• Sufficiently advanced graphics processors offer yet another — limited form of

multithreading.

• Exploiting any of these traditionally requires significant programmer effort.

Hiding the details in libraries — research topic for many years, becoming

much more mainstream now that the hardware is.

Slide 32

Parallelism — Performance

• (Next time.)

16



CSCI 2321 January 22, 2020

Slide 33

Minute Essay

• Suppose you are trying to decide which of two computers, call them Foo and

Bar, will give you the best performance. You run two test programs on Foo

and observe execution times of 10 seconds for one and 20 seconds for the

other. If the first program takes 5 seconds on Bar, how long does the second

program take? (Hint: This might be something of a trick question.)

• Other questions? Be advised that you can ask me anything in a minute essay

(preferably about this class or computer science in general), and I’ll try to

respond.

Slide 34

Minute Essay Answer

• It might seem like that second program would take 10 seconds on Bar, but in

truth you probably can’t be sure without doing the experiment, since the two

machines, or the two test programs, could differ in ways that would make this

obvious answer wrong.

17


