
CSCI 2321 January 27, 2020

Slide 1

Administrivia

• Reminder: Homework 1 due Wednesday, 6pm. If you turn something in later,

please write on it when you turned it in.

Slide 2

Minute Essay From Last Lecture

• (Review.) Most people got the point, but not everyone.

1

CSCI 2321 January 27, 2020

Slide 3

Parallelism — Hardware (Review/Recap)

• Several ways to achieve “more than one thing at a time” in hardware:

• Multiple independent processing elements sharing memory (multicore

processors, multiple processors).

• “Hyperthreading” — hardware to enable very fast context switching. Not true

concurrency but helps with “hiding latency”.

• Computers connected by a network.

• Multiple processing elements operating in lockstep (e.g., GPU). For GPU,

also involves separate memory, with need to move data back and forth

between it and main RAM.

• (Pipelining and vector processing? much more about pipelining later.)

Slide 4

Parallelism — Software (Review/Recap)

• Multithreading — for multicore processors, multiple processors: Single

“process” (from operating-system perspective) with multiple “threads”

(software streams) interacting via shared single memory space.

• Message-passing — for computers connected by network: Multiple

“processes”, not sharing memory, interacting by sending each other

messages.

• SIMD (“single instruction, multiple data”) — for graphics processing units:

Single software stream, executing in-effect-simultaneously on all elements of

an array (or other coolection?). May require explicit data copying.

2

CSCI 2321 January 27, 2020

Slide 5

Parallelism — Performance

• One use of multithreading is to make the code simpler, at least for the

programmer. (Example: typical GUI-based program, where it makes sense to

think in terms of one thread of control for getting user input and one for

drawing.) Doable on a single processor via interleaving. May improve

performance by “hiding latency”.

• But it can also be used to improve performance. Performance often discussed

in terms of “speedup”.

• Here, “speedup” is defined thus:

For P processing elements (cores, fully independent processors, etc.),

speedup S(P) is execution time using 1 PE to execution time using P PEs.

Slide 6

Parallel Performance, Continued

• Might seem like with P processing elements you could get a speedup of P?

But in fact most if not all programs have at least a few parts that have to be

executed sequentially. This limits S(P), and if we can estimate what fraction of

the program is sequential we can calculate an upper bound on S(P).

• Further, typically “parallelizing” programs involves adding some sort of

overhead for managing and coordinating more than one stream of control.

• But even ignoring those, as long as any part must remain sequential . . .

3

CSCI 2321 January 27, 2020

Slide 7

One More Thing About Performance — Amdahl’s Law

• (Named after Gene Amdahl, a key figure in developing some of IBM’s early

mainframes who left to start his own company to make hardware

“plug-compatible” with IBM’s. Aside: Interaction between the two companies

was — interesting?)

• His observation (“Amdahl’s law”) can be more generally stated, but in the

context of parallel programming it’s this:

If γ is the “serial fraction”, speedup on P PEs is (at best, i.e., ignoring

overhead)

S(P) =
1

γ + 1−γ

P

and as P increase, this approaches 1

γ
— upper bound on speedup.

Slide 8

What’s Next — Overview

• Defining a representative architecture (MIPS): what “architecture” means in

context, assembly language programming, machine language. (This is the

“first half” of the course.)

• Implementing this architecture. (This is the “second half”.)

4

CSCI 2321 January 27, 2020

Slide 9

“Architecture” as Interface Definition

• “Architecture” here means “instruction set architecture” (ISA), a key

abstraction.

• From software perspective, “architecture” defines lowest-level building blocks:

what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification: Designers must

build something that behaves the way the specification says.

Slide 10

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs!), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program;

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point). Unlike memory, these are part of the processor.

5

CSCI 2321 January 27, 2020

Slide 11

Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.

• (Yes, these can sometimes be opposing forces!)

Slide 12

Why Study MIPS Architecture?

• Goal is not to become good assembly-language programmers, but to

understand how things work at this level. Once you understand basic

principles, learning another assembly language is easier.

• MIPS architecture is simple but representative.

Aside: SPIM simulator will let you experiment (commands spim and

xspim).

6

CSCI 2321 January 27, 2020

Slide 13

A Bit About Assembly Language Syntax

• Syntax for high-level languages can be complex. Allows for good expressivity,

but translation into processor instructions is complicated.

• Syntax for assembly language, in contrast, is very simple. Less expressivity

but much easier to translate into (binary form of) instructions.

Slide 14

Arithmetic Instructions — Addition

• Instruction for integer addition (in assembly-language form):

add r1, r2, r3

Adds r2 and r3 giving r1.

(Notice the format — symbolic name, operands.)

• Is this expressive enough?

• Should we have more instructions (with different numbers of operands, e.g.)?

Basic principle: “Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic

instructions have exactly three operands.

• sub (subtraction) similar. Multiplication and division are more complicated,

so punt for now.

• What are the operands? Registers. What are those? Well . . .

7

CSCI 2321 January 27, 2020

Slide 15

Registers

• Access to main memory slow compared to processor speed, so useful to

have a within-the-chip work space — “registers”.

• MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

• Would more be better?

Basic principle: “Smaller is faster.”

• In machine language, reference by number.

• In assembly language, useful to adopt conventions for which registers to use

for what, define symbolic names indicating usage.

E.g., use registers 8 through 15 for “temporary” values (short-term), refer to

as $t0 through $t7.

Slide 16

High-Level Languages Versus Assembly Language

• In a high-level language you work with “variables” — conceptually, names for

memory locations. Can do arithmetic on them, copy them, etc.

• In machine/assembly language, what you can do may be more restricted —

e.g., in MIPS architecture, must load data into a register before doing

arithmetic.

• Compiler’s job is to translate from the somewhat abstract HLL view to

machine language. To do this, normally associate variables with registers —

load data from memory into registers, calculate, store it back. A “good”

compiler tries to minimize loads/stores.

8

CSCI 2321 January 27, 2020

Slide 17

Example

• Suppose we have this in C (and assuming all variables are 32-bit integers):

f = (g + h) - (i + j)

• What instructions should compiler produce? Assume we’re using $s0 for f,

$s1 for g, $s2 for h, $s3 for i, $s4 for j.

(Symbolic register names starting $s are used for slightly longer-term

storage than the ones starting $t.)

(Where do values come from? Next topic . . .)

Slide 18

Memory, Revisited

• Usually think of memory as big 1D array of 8-bit “bytes”, each with address

(index into array) and contents (value of array element).

• Often operate on elements in larger units. For MIPS, natural unit is 32-bit

“word”. (Other architectures also often operate on words. 32 bits was

common until recently; 64 bits more so now.)

• MIPS is a “load/store” architecture — access to memory limited to copying

data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

9

CSCI 2321 January 27, 2020

Slide 19

Memory-Access Instructions — Load

• Goal is to get one 32-bit word from memory and put in a register.

• How to specify location in memory? Seems most useful to have address in a

register. For a little more flexibility, specify address in terms of “base” and

“displacement”.

lw r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

• sw (“store word”) instruction similar.

Slide 20

Example

• Suppose we have this in C (and assuming g and h are 32-bit integers and a

is an array of same):

g = h + a[8];

• What instructions should compiler produce? Assume we’re using $s3 for

starting (“base”) address of a, $s2 for h, $s1 for g.

10

CSCI 2321 January 27, 2020

Slide 21

Addition Using Constant

• “Add immediate”

addi r1, r2, c

adds constant c (16-bit signed integer, can be negative) to contents of r2,

puts result in r1.

• Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

Slide 22

Representing (Integer) Data in Binary

• Remember that to the hardware “it’s all ones and zero” — any data you’re

working with.

• As an example — representation of signed integers using two’s complement

notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you

don’t remember.

11

CSCI 2321 January 27, 2020

Slide 23

A Little About the Simulator

• As mentioned, installed on our machines is a simulator you can use to try

your programs. Simulates a MIPS processor running a very primitive

operating system (just enough to load programs and do some simple console

I/O). Assembles programs on the fly.

• Your code goes in a file with extension .s. (Sample starter code on “Sample

programs” page. Contains many things we haven’t talked about yet but could

still be useful for trying things out.)

• Start it with command xspim (spim for command-line version).

(Short demo.)

Slide 24

Minute Essay

• Write MIPS assembly code for the following C program fragment:

a = b + c + d + e

Assume we have b, c, d, e in $s1 through $s4 and want to have a in $s0.

Can you think of more than one way to do it? If you can, does one seem

better than the other, and why?

12

CSCI 2321 January 27, 2020

Slide 25

Minute Essay Answer

• One way:

add $s0, $s1, $s2

add $s0, $s0, $s3

add $s0, $s0, $s4

Another way (not as good since uses more registers?):

add $t0, $s1, $s2

add $t1, $s3, $s4

add $s0, $t0, $t1

13

