
CSCI 2321 February 3, 2020

Slide 1

Administrivia

• Homework 2 to be posted later today. I’ll send e-mail. Due in a week.

Slide 2

Minute Essay From Last Lecture

• (Review.) Key point here is that which “format” to use depends on the

syntax(?) of the instruction (how many and what kinds of operands) rather

than on semantics(?) (is it arithmetic or — whatever).

1

CSCI 2321 February 3, 2020

Slide 3

Instruction Formats — Review/Clarification

• Basic problem being solved is this: How to represent different kinds of

instructions in binary? We’ve already seen that some instructions have the

same kinds of operands (add and sub, e.g.), but not all the same (add and

lw, e.g.).

• MIPS solution: Make all machine-language instructions same size (32 bits),

and always use the first 6 bits for “opcode” (something identifying instruction),

then define different ways of splitting up the remaining bits — different

“instruction formats”, each with “fields”.

Slide 4

Sidebar: Converting between Binary and Hexadecimal

• Recall(?) simple trick for converting between binary (base 2) and

hexadecimal (base 16): Based on observation that each hexadecimal digit

represents four binary digits.

• (Why this works — simple algebra based on writing out numbers as a

sequence of multiples of powers of the base.)

• (Review if you don’t remember how to do this.)

2

CSCI 2321 February 3, 2020

Slide 5

Flow of Control

• So far we know how to do (some) arithmetic, move data into and out of

memory. What about if/then/else, loops? (See sidebar on p. 90 for early

commentary on conditional execution.)

• Need instructions that allow us to “make a decision”. Perhaps surprisingly,

only two: beq (“branch if equal”), bne (“branch if not equal”).

• Illustrate with an example . . .

Slide 6

Sidebar: go to

• Some very early HLLs implemented conditional execution using goto.

What it does: Immediately transfer control to some other point in the program,

identified by a label (e.g., here:).

• Conditional execution and loops can all be expressed using go to. Makes

some sense, since this is pretty much all the hardware can do.

• Very quickly became apparent that this made for code that was hard to

reason about. So later languages have been “block structured”.

3

CSCI 2321 February 3, 2020

Slide 7

Sidebar: go to in C, Continued

• go to still exists in C because every once in a while it makes for

more-readable code (e.g., some error handling).

• Useful in this course as an intermediate step between block-structured

(“normal”?) C and assembly language, which has no notion of block

structuring.

• (Sometimes written goto. Same thing.)

Slide 8

Flow of Control Example

• Suppose we have this in C (and as usual all variables are 32-bit integers)

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

• What instructions should compiler produce? Assume we’re using $s0

through $s4 for f, g, h, i, j.

• (For now, punt on how to represent L1.)

4

CSCI 2321 February 3, 2020

Slide 9

Flow of Control Example, Continued

• Compiling

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

using $s0 through $s4 for f, g, h, i, j.

gives

beq $s3, $s4, L1

add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

Slide 10

Another Flow of Control Example

• Of course, we don’t usually have goto in C. More likely is this:

if (i == j)

f = g + h

else

f = g - h

• What to do with this? Rewrite using goto . . .

5

CSCI 2321 February 3, 2020

Slide 11

Another Flow of Control Example

• Rewriting

if (i == j)

f = g + h

else

f = g - h

gives

if (i != j) goto Else:

f = g + h

goto End:

Else: f = g - h

End:

and then we can continue as before. (How to do unconditional “go to”? j (for

“jump”).)

Slide 12

Loops

• Do we have enough to do (some kinds of) loops? Yes — example:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

(This time we’ll use sll rather than two adds to multiply i by 4.)

6

CSCI 2321 February 3, 2020

Slide 13

Loops — Example Continued

• Result

Loop: sll $t1, $s3, 2 # $t1 <- 4*i

add $t1, $t1, $s5 # $t1 <- & of A[i]

lw $t0, 0($t1) # $t0 <- A[i]

add $s1, $s1, $t0 # g = h + A[i]

add $s3, $s3, $s4 # i = i + j

bne $s3, $s2, Loop # if (i!=h) goto Loop

Slide 14

Conditional Execution, Continued

• If hand-compiling from C, useful to first translate into code with only goto for

out-of-sequence execution, and from there to MIPS.

• Example:

while (A[i] == k) {

i = i + j;

}

7

CSCI 2321 February 3, 2020

Slide 15

Example Continued

• MIPS equivalent, with C-with-goto as comments (and assuming $s0 has

the address of A and registers $s1 through $s3 have i, j, and k):

Loop:

if (A[i] != k) goto End:

sll $t0, $s1, 2 # i * 4

add $t0, $s0, $t1 # &A[i]

lw $t0, 0($t1) # A[i]

bne $t0, $s3, End

i = i + j

add $s1, $s1, $s2

goto Loop:

j Loop

End:

Slide 16

More Flow of Control

• With what we have now we can do if/then/else and loops, but only if condition

being tested is equals / not equals.

• So, we need instructions such as blt, ble, right?

• But those are apparently difficult to implement well; instead MIPS has “set on

less than”:

slt r1, r2, r3

which compares the contents of registers r2 and r3 and sets r1 — 1 if r2

is smaller, else 0.

• Example — compile the following C:

if (a < b) go to Less:

assuming we’re using $s0, $s1 for a, b.

8

CSCI 2321 February 3, 2020

Slide 17

Example Continued

• Equivalent MIPS:

slt $t0, $s0, $s1

bne $t0, $zero, Less

Slide 18

More Flow of Control, Continued

• Do we have enough now? for all six possible C comparisons of integers?

Yes . . .

• One more C flow-of-control construct we could talk about — switch — but

defer for now.

• But we do want to talk about one more HLL feature, namely functions . . .

9

CSCI 2321 February 3, 2020

Slide 19

Procedure Calls

• How do we call procedures (a.k.a. functions, methods)? Consider an

example:

a = a + a;

x = foo(a);

b = b + b;

y = foo(b);

/* */

int foo(int n) { return n+1; }

• If we’ve compiled this code (and function foo), what do we have in memory

when it’s running? What’s supposed to happen when we get to a call to foo?

Slide 20

Procedure Calls, Continued

• So, what we have to do to call a procedure is:

1. Put parameters where procedure can find them.

2. Transfer control to procedure.

3. Acquire storage resources for procedure (recall that every time you call a

C function you get a “new copy” of all its local variables).

4. Run procedure.

5. Put results where caller can find them.

6. Return control to caller.

• How to do all this?

10

CSCI 2321 February 3, 2020

Slide 21

Sidebar: Register Conventions Revisited

• From hardware point of view, all general-purpose registers are in some sense

the same, with the sort-of exception of registers 0 (always has value 0) and

31 (discussed soon).

• From software point of view, it’s useful to agree about how to use them — for

parameters, return values, etc. Idea is that compilers automatically enforce

conventions, human-written assembly code should follow them too.

Slide 22

Register Conventions, Continued

• So far:

$s0 through $s7 for variables.

$t0 through $t9 as “scratch pads”.

• Add two more groups:

$a0 through $a3 for parameters (punt for now on what to do if more than

four).

$v0 and $v1 for return values. (Why two? to make it easy to return a 64-bit

value such as used for floating-point.)

11

CSCI 2321 February 3, 2020

Slide 23

Jumping To/From Procedures

• When we jump to a procedure, must remember where we came from so we

can return. Do this with “jump and link”

jal label

which puts address of next instruction in register $ra (31) and jumps to

label. (How do we know address of next instruction? “Program counter”

(special register) has address of current instruction.)

• We can then get back with “jump to register”

jr r1

which jumps to address in register r1.

Slide 24

Register Saving and Local Variables

• Actually running the called procedure is straightforward, right?

• Yes, except we need some way to save/restore registers — so we don’t mess

up caller. (By convention, “temporary” registers might change, but most

others don’t.)

• We also need a way to make space for local variables.

12

CSCI 2321 February 3, 2020

Slide 25

Register Saving and Local Variables, Continued

• Typical solution: Use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• (To be continued.)

Slide 26

Minute Essay

• None — quiz.

13

