
CSCI 2321 February 5, 2020

Slide 1

Administrivia

• Homework 2 posted. Due next Monday.

• Quiz 2 next Wednesday. Topics from chapter 2, up through addressing

modes.

• Quiz 1 scores good! Sample solution on course Web site.

Slide 2

Procedure Calls — Recap/Review

• Calling procedures (a.k.a. functions or methods) more complicated than it

maybe looks from a HLL. Several requirements (review next slide).

• Every language that compiles (or assembles) to machine language could do

it differently, but useful to define standard way, so languages can interoperate.

(Also allows operating system to load program and start it up without knowing

source-code language.)

Most of this is software; main role of hardware is to provide instruction to jump

while “remembering” where we came from.

1

CSCI 2321 February 5, 2020

Slide 3

Procedure Calls — Requirements

• Put parameters where procedure can find them.

• Transfer control to procedure.

• Acquire storage resources for procedure (for local variables, etc.).

• Run procedure.

• Put results where caller can find them.

• Return control to caller.

Slide 4

Register Saving and Local Variables

• Actually running called procedure straightforward, except:

Called procedure may want to use registers in some way not compatible with

caller. (If nothing else, consider what happens with $ra if the called

procedure in turn calls another.)

MIPS convention: $sN registers retain value across procedure call; others

(especially $tN registers) might not.

• To make this work, need some way to save/restore registers.

• Also need a way to make space for local variables.

2

CSCI 2321 February 5, 2020

Slide 5

Register Saving and Local Variables, Continued

• Typical solution: Use part of memory as a stack (familiar ADT, right?), for

saving registers and other local storage. Makes recursive procedures easier.

• By convention, stack starts at high address and “grows” to lower addresses.

and register $sp (“stack pointer”) points to top. “Push” and “pop” are then

straightforward. (Note: $sp just a symbolic name for one of the 32

general-purpose registers.)

(Recall discussion of “buffer overflows” from CSCI 1120?)

• (Review starter code. Everything in it should now make some sense?)

Slide 6

Example

• How to compile the following?

int main(void) {

int a, b, c, x;

a = 5; b = 6; c = 7;

x = addproc(a, b, c);

return 0;

}

int addproc(int a, int b, int c) {

return a + b + c;

}

(Sample program call-addproc.s.)

3

CSCI 2321 February 5, 2020

Slide 7

Variables

• Space for local variables typically allocated on the stack. Since $sp can

change during computation, can use register $fp (“frame pointer” — another

of the 32 general-purpose registers) to point to start of area (“procedure

frame”) for saved registers, local variables.

• What about other variables?

Two basic types: fixed/static (think global variables) and dynamically allocated

(think C malloc(). (e.g., with malloc in C).

MIPS convention: Put them right after the program code, use register $gp

(“global pointer”, also one of general-purpose ones) to point to them.

Typically call the memory used for dynamically-allocated variables “the heap”.

Slide 8

More Load/Store Instructions

• MIPS architecture defines lw and sw for loading/storing data in 32-bit

chunks; also defines lb (“load byte”) and sb (“store byte”) for loading/storing

data in 8-bit chunks, plus instructions to load/store data in 16-bit chunks.

All must align on appropriate boundaries.

4

CSCI 2321 February 5, 2020

Slide 9

Working with Constants, Revisited

• Recall addi instruction. Exists because often we need to use a small

constant in a program.

• Uses same format (“I format”) as lw and sw, which allows 16 bits for

constant.

• What if we need more than 16 bits? “Load upper immediate” instruction:

lui register, constant

Puts (16-bit) constant in “upper” 16 bits of register. Follow with addi (or,

better, ori) to load a full 32-bit constant.

• Example: two instructions assembler generates for la pseudoinstruction

(example in simulator).

Slide 10

Addressing Modes

• We’ve been unspecific about how to specify addresses of a lot of things.

• So, now look at various “addressing modes” — ways to specify where to find

an operand.

• Which is used? Defined by instruction format (R, I, J). (J? yes, format for jump

instructions that include a label — jal and j.)

5

CSCI 2321 February 5, 2020

Slide 11

Addressing Modes, Continued

• Register addressing: Value is in one of the general-purpose registers.

Assembler defines symbolic names for them (e.g., $t0).

• Immediate addressing: Value is in instruction itself (as in, e.g., addi).

• Base-displacement addressing: Value is in memory, with address calculated

by adding a displacement to what’s in a register. Example is memory-address

operand of lw, sw.

• PC-relative addressing (more shortly).

• Pseudo-direct addressing (more shortly).

Slide 12

PC-Relative Addressing

• Address is formed by adding offset in instruction (16 bits) and contents of the

program counter (special register).

(Actually, address is offset times 4, plus the updated program counter.

Simulator doesn’t quite simulate this, unless run with the flag

-delayed branches.

• Example is conditional branches (beq, bne).

• Does this limit what we can do with beq and bne? If so, how often will it

matter? What could we do to work around it?

6

CSCI 2321 February 5, 2020

Slide 13

PC-Relative Addressing, Continued

• 16-bit offset obviously limits how far we can “jump”. But probably fine for most

uses (conditional execution, loops).

• If not, rework code to use j or jr.

Slide 14

PC-Relative Addressing — Example

• As an example, try working out machine code for the bne in this line. (May

be helpful to annotate with relative locations so we easily compute offset we

need.)

bne $t0, $t1, There

add $t2, $zero, $zero

add $t3, $zero, $zero

add $t4, $zero, $zero

There:

sub $t5, $zero, $zero

7

CSCI 2321 February 5, 2020

Slide 15

PC-Relative Addressing — Example, Continued

• Look up opcode — 0x5.

• Look up register numbers — 8, 9.

• Compute needed offset by . . . Strictly speaking, should be offset from relative

location of instruction after the bne to “branch target” (There), divided by 4.

(Why divided by 4? always a multiple of 4! so last two digits always 0 . . .) But

just counting instructions gives the same effect (and here’s it 3).

• Rearranging bits and converting to hexadecimal, we get 0x15090003.

Does this agree with what SPIM shows? Not quite . . .

Slide 16

PC-Relative Addressing — Example, Continued

• For some reason, SPIM by default computes offsets from the current

instruction rather than the next. No idea why, but can force it to compute the

“right” offsets with flag -delayed branches.

8

CSCI 2321 February 5, 2020

Slide 17

Pseudo-Direct Addressing

• Address is formed by combining address in instruction (26 bits) and upper bits

of program counter:

As with PC-relative addressing, no real need to store last 2 digits, since

always 0.

Actual address is address field in instruction, times 4, OR’d with upper bits of

program counter to give 32 bits in all.

• Example of use is unconditional branch (j).

• Does this limit what we can do with j? If so, will that be a problem? Can we

work around it?

Slide 18

Pseudo-Direct Addressing, Continued

• 26-bit address does limit what we can do, but probably fine for most uses

(conditional execution and loops, procedure calls).

• If not enough, can rework code to use jr.

• (To be continued.)

9

CSCI 2321 February 5, 2020

Slide 19

Minute Essay

• How did the quiz compare to your expectations?

• Any questions? Is this all starting to make sense to you?

10

