
CSCI 2321 February 12, 2020

Slide 1

Administrivia

• Reminder: Homework 2 due today. (Don’t forget essay, both parts of “honor

code statement” (pledge, collaboration).)

• Reminder: Quiz 2 Monday. Topics from chapter 2, up through addressing

modes.

• (I am working on grading Homework 1. Soon! If I finish before Monday, I can

leave papers in my mailbox for you to pick up?)

• Homework 3 to be posted later today. Due a week from today.

Some written problems and one programming problem (in MIPS assembler)!

One more homework before Exam 1, to be due the following Wednesday.

Slide 2

Minute Essay From Last Lecture

• Most people thought the quiz was fine. Good!

1

CSCI 2321 February 12, 2020

Slide 3

Addressing Modes — Recap/Review

• Register addressing (value in general-purpose register, as in, e.g., add).

• Immediate addressing (value in instruction, as in, e.g., addi).

• Base-displacement addressing (value in memory, addressed using register

and fixed displacemenet, as in, e.g., lw).

• PC-relative addressing (value computed using current value of PC,

assembler-generated constant, as in, e.g., beq).

• Pseudo-direct addressing (value mostly in instruction, combined with

high-order bits of PC, as in, e.g., j).

Slide 4

Pseudo-Direct Addressing — Example

• As an example, trying working out machine code for the previous example

with j There replacing the bne:

j There

add $t2, $zero, $zero

add $t3, $zero, $zero

add $t4, $zero, $zero

There:

sub $t5, $zero, $zero

2

CSCI 2321 February 12, 2020

Slide 5

Pseudo-Direct Addressing — Example, Continued

• Look up opcode — 0x2.

• To get 26-bit value for the address, need not a relative location (as for bne)

but an absolute one.

To do that, need to know where in memory the (machine) code resides.

Suppose we paste this code into the starter example, right after the “opening

linkage” code, and use as starting address of whole progrram location where

SPIM puts main:. That’s 0x0040 0024. Counting up, get an address of

0x0040 003c for There. Remove top four bits of that and divide by 4 to

get

0000 0100 0000 0000 0000 0011 11

• Putting the two fields together and converting to hexadecimal gives

0810000f, which agrees with SPIM.

Slide 6

A Little (More) About Assembly Language and
Assemblers

• We’ve done short examples of translating assembly language into machine

language.

• Normally this is done programmatically, by an “assembler”. Accepts symbolic

representations of instructions. Also allows defining “labels” (strings ending

:) and uses some directives (starting with “.”, e.g., .word) to help keep

track of instructions, define character strings, etc.

• Details for MIPS assembler in Appendix A.

3

CSCI 2321 February 12, 2020

Slide 7

Assembly Language — Program Elements

• Instructions: Self-explanatory? Each represents one machine-language

instruction — usually anyway. Some are are “pseudoinstructions”, translated

into one or more “real” instructions (ones that have machine-language

equivalents). Example is la, translated into combination of lui and ori.

• Labels: Identifier (following usual rules for such) followed by :.

Useful/necessary in writing code but not (usually) preserved in object code.

• Directives: Start with . and tell the assembler something. (Next slide.)

Slide 8

Assembly Language — Directives

• .text indicates that what follows is instructions.

• .data indicates that what follows is data.

• .word, .asciiz, .space reserve space for data (and also, for the first

two, initialize it).

• .globl identifies a label that might be referenced by outside code. (Think

“separate compilation” and how one might combine object files. More about

this soon.)

4

CSCI 2321 February 12, 2020

Slide 9

System Calls

• System calls are how user programs request service from operating system

— not just in MIPS, but in general. In MIPS the instruction is syscall;

other architectures have something analogous.

• System calls similar to procedure calls in some ways: Need to communicate

to O/S which service you want (e.g., write some text to “standard output”) and

possibly parameters (e.g., text to write). As with procedure calls, do this by

putting values in particular registers, but then rather than jal we use

syscall.

So why not just use jal?? Well . . .

Slide 10

System Calls, Continued

• Important distinction (discussed more in O/S courses, such as our

CSCI 3323): Code for “system call” executes as part of the O/S, which means

not subject to same restrictions as user programs (e.g., on memory access).

• Details (e.g., what services are offered) depend on O/S. Very primitive O/S

included in spim supports some for simple I/O; details in Appendix A.

5

CSCI 2321 February 12, 2020

Slide 11

System Calls in MIPS — Details

• How to specify which service, arguments?

Put number indicating which service in $v0. (Appendix A has a list of

services.)

If parameters needed, put them in $a0 and $a1.

• Return value in $v0.

Slide 12

Writing Complete Programs for the Simulator

• Simulator includes what’s in essence a very primitive operating system, with

facilities to load programs and do simple I/O. As in real operating systems, I/O

done by making “system calls”.

• Complete programs can be run from command line with, e.g., spim

-file hello.s.

6

CSCI 2321 February 12, 2020

Slide 13

Complete Programs — Examples

• Can now write some simple but complete programs for the simulator(!).

• (Examples on “sample programs” page.)

Slide 14

Assembly Language, Etc. — More Examples

• Textbook presents extended example (sort). Skim as an example of using

MIPS instructions.

• Longer examples coming soon (next class?).

7

CSCI 2321 February 12, 2020

Slide 15

Minute Essay

• Is this all making (some!) sense? Questions? What if anything seems

murkiest to you at this point?

8

