
CSCI 2321 February 17, 2020

Slide 1

Administrivia

• Reminder: Homework 3 due Wednesday. Turn in written problems in

hardcopy, as with previous homeworks. Turn in programming problem by

e-mail, as in CSCI 1120. (General principle: E-mail if it’s code I’ll want to test,

otherwise paper.)

Note that I made a smallish change in the programming problem over the

weekend. Revised version posted yesterday. Builds on solution to problem

from Homework 2; my solution available on Google Drive.

• It has come to my attention that clever(?) students had figured out that quiz

solutions from previous years were available online. I thought I had made

them inaccessible by changing file permissions, but apparently I forgot. But in

any case, they’d be off limits according to the rules in my syllabus! (Did

people not know that??)

Slide 2

Minute Essay From Last Lecture

• Several people mentioned homework being helpful in understanding material.

That’s my goal!

1

CSCI 2321 February 17, 2020

Slide 3

Miscellaneous Review

• We’ve covered a fair amount, so a fast review?

Slide 4

Machine Language – Review/Recap

• Basic problem to be solved here is how to encode instructions in binary.

Could possibly define a unique or mostly-unique way for each different

instruction, but to simplify process design it makes more sense to define a

small number of standard formats.

• Translating assembly language into machine language is fairly

straightforward:

Write down values for all fields in instruction (specifics vary by format).

How to get from that to 32-bit binary number or 8-digit hexadecimal number?

concatenate fields, convert.

2

CSCI 2321 February 17, 2020

Slide 5

R Format (Review)

• Meant for arithmetic instructions (e.g., add) and also for shifts (e.g., sll).

• Fields:

– op — op code, 6 bits (zero for arithmetic/logical operations, and funct

below specifies which one)

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (only used for shift instructions), 5 bits

– funct — “function field”, 6 bits (only used for arithmetic/logical

operations)

Slide 6

I Format (Review)

• Meant for instructions that involve a 16-bit constant (e.g., addi, lw, beq).

• Fields:

– op — op code, 6 bits

– rs — first source operand, 5 bits

– rt — destination operand, 5 bits

– imm, offset — constant/offset, 16 bits

• For beq and bne, imm is offset from next instruction to target, divided by 4.

3

CSCI 2321 February 17, 2020

Slide 7

J Format

• Meant for instructions that involve an “absolute” address (e.g., j, jal).

• Fields:

– op — op code, 6 bits

– target — address/4, 26 bits

• Note that target depends on where in memory program resides. More

about this soon.

Slide 8

Decoding Machine Language

• How to go the other way — machine instruction to assembly language?

• If what you have is hexadecimal, first write down binary equivalent.

• Look first at opcode (first six bits). Look that up to find out which instruction

and which format. (If you haven’t already found this — there is a table

mapping opcodes to instructions, hidden in Appendix A (figure A.10.2).)

• Then break other 26 bits into fields based on instruction format, and translate

as appropriate.

• (Keep in mind that this must be possible to do without too much intelligence,

since processors have to do something similar!)

4

CSCI 2321 February 17, 2020

Slide 9

Register Usage — Recap/Review

• To the hardware, those 32 general-purpose registers are all the same, except

that:

0 always has value 0

31 is used by jal

• However, it’s useful to adopt conventions for what they’re used for.

Appendix A has a summary of register names/usage, as does the reference

summuary (“green card” in paper copy).

Slide 10

Memory Layout — Review/Clarification

• Again the hardware imposes no particular distinctions on how memory is

used, but useful to adopt conventions. The one described in the text is typical.

From smallest to largest addresses:

– A reserved block (usually for O/S use).

– A block for the program’s text segment (code).

– A block for the program’s data segment, divided into static data (globals,

etc.) and dynamic data (“the heap”). UNIX systems further subdivide this

into a segment for fixed data with values assigned at compile time and a

segment with space for other static data (not initialized) and dynamic data.

– Possibly unused space.

– A block for the stack segment.

• Note that the data segment grows toward larger addresses, the stack

segment toward smaller addresses.

5

CSCI 2321 February 17, 2020

Slide 11

Variables — Review/Clarification

• Declaring a variable in a high-level language (e.g., int x; in C) reserves

space for it in memory (in principle anyway — more shortly) and assigns it a

name (for the purposes of compilation).

Space can be in “data” segment of memory, for static/global variables, or “on

stack” for local variables.

• Referencing the variable implies accessing the associated memory location.

(Figuring out the instructions to do that is part of the compiler’s job.

Presumably it has some sort of map from names to locations.)

In MIPS, that means a load (for read) or store (for write). A very simple

compiler would do this for every access. But . . .

Slide 12

Variables, Continued

• Memory access is slow compared to processor speed, so good compilers will

streamline things by sometimes keeping values of frequently-used variables

in registers, only loading or storing when necessary to preserve semantics.

This is why the textbook examples talk about associating registers with

variables. (Clearer?)

• I said “in principle” because a good compiler might even figure out that it

might be possible to just use a register to hold a variable’s value and never

assign it a memory location. Simple contrived example:

int foobar(int x) {

int y = x+1;

return y;

}

No need to have y in memory at all, right?

6

CSCI 2321 February 17, 2020

Slide 13

System Calls — Review/Revisited

• Idea of system calls: Typically there are things application programs want to

do (e.g., get more memory) that in general-purpose system should only be

done by a central authority (the operating system). Mechanism for doing that

in a safe/secure way — “system calls”. System call is a request for the O/S to

do something.

• Conceptually much like procedure call, but with an important difference,

having to do with what the called code is allowed to do.

• How it works in assembly language varies by architecture.

• What services are provided varies by operating system.

Slide 14

System Calls in MIPS — Review

• Instruction syscall (no operands) makes a system call.

• How does O/S know which service is requested . . .

• In SPIM anyway, $v0 has number indicating which service. (Appendix A has

a list.)

Some also need parameters, which go in $a0 and $a1.

Return value in $v0.

7

CSCI 2321 February 17, 2020

Slide 15

Assembly Language, Etc. — More Examples

• As another example both of writing procedures in MIPS and writing complete

programs for the simulator, let’s write a program to compute factorial, first

using recursion, then iteration.

• To do this, we need full multiplication. “Real” instruction just a tad

complicated, so for now use pseudoinstruction mul:

mul r1, r2, r3

Slide 16

Minute Essay

• None — quiz.

8

