
CSCI 2321 March 2, 2020

Slide 1

Administrivia

• Reminder: Homework 4 due today. If you haven’t watched the video lecture

from last week (and at this point only about two-thirds of those enrolled have

sent me a minute-essay response indicating they had), I strongly encourage

you to do so before finishing this assignment. Remember: You have the

option of turning in a preliminary version of the homework today and a better

version soon.

• Exam 1 postponed until after break. I plan to use part of the class period just

before it for review, but there’s a review sheet on the course Web site if you

want to start preparing.

• Reminder: Quiz 3 Wednesday. Likely topics are more MIPS programming

(including procedure calls) and linking.

• I should be able to return graded Homework 2 later today. Sorry about the

delay!

Slide 2

From Source Code to Execution — Recap/Review

• Four main phases, conceptually at least — compile, assemble, link, load.

• Real systems (or simulators) may combine steps, in appearance or even in

reality — e.g., a compiler might go directly from high-level source to object

code, in appearance or in fact, and the SPIM simulator assembles “on the fly”.

1



CSCI 2321 March 2, 2020

Slide 3

Compiling — Review(?)

• Compiler translates high-level language source code into assembly language.

A single line of HLL code could generate many lines of assembly language.

• Just generating assembly language equivalent to HLL is not trivial. Result,

however, can be much less efficient than what a good assembly-language

programmer can produce. (When HLLs were first introduced, this was an

argument against their use.)

• But eventually compilers got “smarter” . . .

Slide 4

Compiling, Continued

• One reason compilers are so big and complicated is that more and more they

try to “optimize” (generate code that’s more efficient than a naive translation),

for example, by keeping values in registers to reduce the number of memory

accesses.

• Conventional wisdom now is that compilers can generate better

assembly-language code than humans, at least most of the time.

• Further, many architectures (“RISC”, short for Reduced Instruction Set

Computing) designed with the idea that most programs will be written in a

high-level language, so ease of use for assembly-language programmers not

a goal.

• Some compilers will show you the assembly-language result (e.g., gcc with

the -S flag).

2



CSCI 2321 March 2, 2020

Slide 5

Compiling, Continued

• Compilers are big and complicated partly because they try to generate

efficient code (while, one hopes, preserving the program’s meaning!).

• As an example: Textbook goes into some detail about compiling C code to

loop through an array, showing a version that uses indices and one that uses

pointers. A “good” compiler will likely generate the same code for both.

Can test this with gcc — write it both ways, compile with -S, and compare.

Last time I checked, identical if compiled with -O, but not so with current

version. “Hm!”?

• Note in passing that compiler optimizations can play havoc with attempts to

time things: C compilers are allowed to just skip any code that doesn’t have

an observable effect (i.e., result isn’t printed or otherwise used). (In practice

they may or may not.)

Slide 6

Assembling — Review(?)

• Assembler’s job is (mostly!) to translate assembly language into ones and

zeros (machine language). Goal is for this process to be simple and

mechanical, unlike compiling. (Compilers usually non-trivial to implement;

assemblers much easier.)

• Input to assembler is program consisting of instructions, labels, “directives”.

3



CSCI 2321 March 2, 2020

Slide 7

Assembling — Instructions

• Instructions generally are symbolic representations of machine-language

instructions.

• However, assemblers can also support “pseudoinstructions” — shorthand for

commonly-occurring uses/combinations of real instructions, readily translated

to real instructions. (Examples in MIPS include li, la; simulator shows

what they’re translated into.)

(Aside: I prefer to mostly avoid these; I think you understand the primitive

operations better if you stick to “real” instructions with a few exceptions such

as la.)

Slide 8

Assembling — Labels

• Labels in program define symbols that can be referenced as branch and jump

targets and by la. How does that work?

• Assembler decides where to put code and variables (at two fixed addresses in

simulator). Assembler then builds a “symbol table” mapping names to

addresses and uses it to fill in operands of la, branch and jump instructions.

4



CSCI 2321 March 2, 2020

Slide 9

Assembling — Directives

• Assembler directives (starting . in MIPS) tell the assembler — something.

Examples include .word to define a 4-byte constant, .end.

• Two worth additional mention here — .text, .data:

Typically output includes “text (code) segment” consisting of

machine-language instructions and “data segment” containing fixed/static

data.

.text, .data tell assembler which of the these to use for following code.

Slide 10

Linking — Review(?)

• For small programs assembling the whole program works well enough. But if

the program is large, or if it uses library functions, seems wasteful to

recompile sections that haven’t changed, or to compile library functions every

time (not to mention that that requires having their source code).

• So we need a way to compile parts of programs separately and then

somehow put the pieces back together — i.e., a “linker” (a.k.a. “linkage

editor”).

• To do this, have to define a mechanism whereby programs/procedures can

reference addresses outside themselves and can use absolute addresses

even though those might change.

5



CSCI 2321 March 2, 2020

Slide 11

Linking, Continued

• How? define format for “object file” — machine language, plus additional

information about size of code, size of statically-allocated variables, symbols,

and instructions that need to be “patched” to correct addresses. Format is

part of complete “ABI” (Application Binary Interface), specific to combination

of architecture and operating system.

So, output of assembler is one of these, including information about symbols

defined in this code fragment and about unresolved (external) references.

Slide 12

Linking, Continued

• Linker’s job is then to combine object files, merging code and static-variable

sections, resolving references, and patching addresses. Result should be

something operating system can load into memory and execute —

“executable file”.

• (Note in passing that this is “static linking”, as opposed to “dynamic linking”.

More about the latter later.)

6



CSCI 2321 March 2, 2020

Slide 13

Loaders

• So what’s left . . .

• “Executable file” contains all machine language for program, except for any

dynamically-linked library procedures. What does the operating system have

to do to run the program? Well . . .

• Obviously it needs to copy the static parts (code, variables) into memory.

(How big are they?) Also it needs to set up to transfer control to the main

program, including passing any parameters. And it may need to perform

dynamic linking (more about that later). And what about those absolute

addresses?

• So as with object code, executable files contain more than just machine

language. File format, like that of object code, is part of ABI.

Slide 14

Arithmetic Overflow

• You might notice that the factorial example quietly gives wrong results for

larger inputs (and they don’t even have to be very large!).

• Compare to what happens if you write an equivalent program in a high-level

language . . .

• When result-in-process gets too big to fit into available space (32-bit register

here), two options: Hardware can signal exception, or it can just drop

high-order bits. Result can look negative, or it can just be wrong.

7



CSCI 2321 March 2, 2020

Slide 15

Arithmetic Overflow, Continued

• “Signal exception”? Yes. We’ll talk more about this later, but possible to build

hardware that detects overflow and does something. (Apparently SPIM

doesn’t do this.)

• But since many programming languages ignore overflow, often instructions

have signed form that checks and unsigned form that doesn’t (e.g., addu

versus add).

• Really careful programmers put in their own checks for overflow. May actually

be easier in assembly language: mult instruction generates 64-bit result in

special-purpose registers . . .

Slide 16

Multiplication and Division

• In the factorial example I use what appears to be an instruction mul. Really a

pseudoinstruction (though SPIM doesn’t seem to think so).

• “Real” multiply has only two operands

mult src reg1, src reg2

and it puts a 64-bit result in special-purpose registers lo, hi. Can access

them with mflo, mfhi, e.g.,

mflo dest reg

• Divide (div) similar; quotient goes in lo and remainder in hi.

8



CSCI 2321 March 2, 2020

Slide 17

More Examples

• Now we could add code to the factorial example to check for overflow. (I’ll

write this, maybe with your help.)

• Another possibly interesting example would be a a procedure like the simple

one I show for CSCI 1120 to divide, with two pointer parameters to allow

“returning” both quotient and remainder. (Next time.)

Slide 18

Minute Essay

• In the programming problem for Homework 4, I say you won’t get full credit if

you don’t follow conventions for calling procedures. Why does this matter?

Couldn’t you pass arguments to a procedure in whatever registers you want,

as long as caller and called agree?

• And why save/restore registers?

• (P.S. Vote!)

9



CSCI 2321 March 2, 2020

Slide 19

Minute Essay Answer

• If you write both the calling program and its called procedures, it might seem

like it hardly matters how you communicate between caller and called. But

think about how well (or not well) this would work for a larger project! and

even for small projects, isn’t it easier to always follow convention rather than

inventing one for each procedure?

• Saving/restoring registers . . . You can skip this if the procedure doesn’t modify

any of the registers normally saved/restored. I say probably good style to do it

anyway; better to just copy boilerplate than try to think through exactly what

each case needs?

10


