
CSCI 2321 March 25, 2020

Slide 1

Administrivia

• Recurring meetings for M/W office hours created. Information shared by

e-mail and reachable from my home page

(http://www.cs.trinity.edu/˜bmassing).

First of these is today. It will be my first try at using the one-at-a-time feature.

If it doesn’t work, fallback is Google Chat. chat.google.com seems to

work better than clicking “Chat” from TMail. I’m kind of hoping at least a few of

you will try it, so I get a better sense of how it will work!)

• I just relayed to all of you a message from Dr. Fogarty about Discord, as a

possible way to connect a bit more with your classmates. Looks promising?

Slide 2

Exam 1, Revisited

• I prefer that you do this during one of the Zoom meeting times:

– Thursday March 26, 5pm to 7pm.

– Friday March 27, 4pm to 6pm.

I’ve set up the meetings like office hours, with one-at-a-time access.

• I plan to put the exam in our shared folder during those times. If you need to

take the exam at another time, let me know and I’ll make it available then.

• If you have an SAS accommodation allowing you extra time, let me know. My

idea is that you’d start the exam during one of the scheduled periods and

work for your allowed time.

• As mentioned Monday — PDF from me to you (shared Google Drive folder),

PDF from you to me (e-mail or your “graded work” folder).

• Questions?

1

CSCI 2321 March 25, 2020

Slide 3

Sidebar(?): Parallel Execution and Synchronization

• A lot of commodity hardware these days features multiple processing units

(“cores”) sharing access to memory. One reason for this is that in theory we

can make individual applications faster by splitting computation up among

processing elements.

• Having processing elements share memory makes parallel programming

easier in some ways but has risks (“race conditions”). Avoiding the risks

requires some way to control access to shared variables (e.g., to implement

notion of “lock”).

Slide 4

Parallel Execution and Synchronization, Continued

• Most texts on operating systems discuss synchronization issues and present

several solutions (“synchronization mechanisms”), some rather high-level and

others not.

(Why is this in O/S textbooks? because O/Ss typically have to manage

“processes” executing concurrently, either truly at the same time or

interleaved.)

• The most primitive can (with some simplifying assumptions) be implemented

with no hardware support. But hardware support is very useful.

2

CSCI 2321 March 25, 2020

Slide 5

Sidebar: Why is Implementing a Lock Hard?

• It might seem like it would be straightforward to implement a lock — just have

an integer variable, with value 0 meaning “unlocked” and anything else

meaning “locked”. And then you “lock” by looping until the value is 0, then

setting to nonzero:

while (lock != 0) {}

lock = 1;

and “unlock” by setting back to 0.

• But this doesn’t work! (Why not?)

Slide 6

Instructions for Synchronization

• Key goal in designing hardware support for synchronization is to provide

“atomic” (indivisible) load-and-store. This allows writing a low-level

implementation of “lock” idea.

• Many architectures do this with a single instruction (e.g., “test and set” or

“compare and swap”). Requires two accesses to memory so may be difficult

to implement efficiently.

• MIPS approach: Same idea, but using a pair of instructions, ll (“load

linked”) and sc (“store conditional”).

3

CSCI 2321 March 25, 2020

Slide 7

MIPS Instructions for Synchronization

• ll loads a value from memory and somehow remembers the location and

value. Syntax:

ll reg1, displacement(reg2)

Operands used as for lw.

• sc stores a value into memory — IF the location has not changed since a

previous ll from that address.

sc reg1, displacement(reg2)

Operands used almost as for lw, except that reg1 is set to indicate whether

the store “succeeded” (i.e., value had not changed since ll). So one can

regard a (ll, sc) pair as forming a single atomic load/store.

• (How to make this work? Hardware designers’ problem! glib answer but

maybe all we can do in this course.)

Slide 8

MIPS Instructions for Synchronization — Example

• Example of use (from textbook p. 122):

again:

addi $t0, $zero, 1 # $t0 <- value to place in lock

ll $t1, 0($s1) # $t1 <- old lock value

sc $t0, 0($s1) # try to set new lock value

beq $t0, $zero, again # $t0 == 0 means store failed

(so try again)

add $s4, $zero, $t1 # $s4 <- old lock value

4

CSCI 2321 March 25, 2020

Slide 9

Minute Essay

• Are you able to get to all the resources I want you to have access to for the

exam? sample solutions to homeworks and quizzes, your graded work, etc.?

And when I say “I’ll put the exam in the shared Google Drive folder for the

course — okay?

• We’ve been doing online teaching for a few days now. How’s it going for you?

5

