CSCI 2321 March 30, 2020

Administrivia

e | do send a lot of e-mail-to-all. Consider setting up a TMail filter so it's easier
to keep track of? Filter on subject containing “csci 2321” or “csci 1120/ 2321”.

e | still intend to share with each of you a “grade summary” similar to what | did
at early-alert-grades time. More by e-mail soon?

Slide 1 e | had thought I'd make more-extensive use of TLearn but probably will not.
Instead I’'m aiming to have information accessible from my home page and/or

the course Web site.

Administrivia

e Virtual office hours via Zoom. Hours on my home page
(www.cs.trinity.edu/ “bmassing) plus link to Trinity-users-only
document with links etc.

e Several updates to course Web site, under “Useful links”:

Slide 2 — Information about class meetings and recordings, via links to
Trinity-users-only documents.

— What the University is saying to students about remote learning. Section
on “ABCs of remote learning” worth a look, especially “Set boundaries”.

e Schedule page updated with next two weeks’ topics and readings. Sorry
about the delay — | forgot!

o Next quiz a week from today (tentative).

CSCI 2321 March 30, 2020

Exam 1 Follow-Up

| thought trying to reproduce the conditions of an in-class exam remotely
would work and be the best option for the result | wanted. | didn’t want to just

make the exam take-home because | wanted the “timed” aspect.

e This seems to have worked okay for many students, aside from some

Slide 3 difficulties figuring out how to “mark up” PDF.

e For others, not so much. Not all of you apparently have access to a quiet work
environment. That that didn’t occur to me — | really apologize.

o My impression is that everyone made a real effort to make it work.

Appreciated!

e More in minute essay.

Numbers and Arithmetic — Overview

e Most current architectures represent integers as fixed-length two’s
complement binary quantities.

(But note there are/were architectures that support variable-length “packed
decimal”, with each byte storing representations of two base-10 digits.)

Slide 4 e Most current architectures these days represent real numbers using one or
more of the formats laid out by IEEE 754 standard. Based on a base-2
version of scientific notation, plus special values for zero, plus/minus “infinity”,

and “not a number” (NaN).

(But historically there have been architectures that could represent fractional
quantities using base-10 “fixed-point” notation, and this may be coming back.)

\. J

CSCI 2321 March 30, 2020

Numbers and Arithmetic — Overview, Continued

e Arithmetic can (in principle anyway) be done using same techniques taught to
grade-school children.

(Well, I hope still taught? Fans of classic science fiction may know Asimov
short story “The Feeling of Power” (19587?), which posits a world in which no
humans can do simple arithmetic without a computer. But he didn’t predict

Slide 5
how pervasive and affordable computers would become!)

4)

Binary Versus Decimal (Review)

e In decimal (base 10) notation, each digit is multiplied by a power of 10. Same
idea for binary (base 2), but using powers of 2.

® So, converting from binary to decimal is easy (if tedious), working from
definition.
Slide 6 Brief example:

10112:(8+2+1)10:1110

CSCI 2321 March 30, 2020

Binary Versus Decimal (Review), Continued

e Converting from decimal to binary? Repeatedly divide by 2 and record
remainders ...

o Why does this work? Could describe this as a recursive algorithm for
computing bits(n):

Slide 7 — Base case is n<2; trivial.

— For recursive step, divide » by 2 to get quotient ¢ and remainder ». Then
n=2q+r, and:
Last bit of bits(n) should be r.

Remaining bits are bits(q), left-shifted by 1.

Other Number Bases (Review)

e Binary useful for showing real internal state but not very compact. Decimal
compact but not so easy to convert to/from binary.

e Easy to convert binary to/from power-of-2 base. Hence use of “octal” (base 8)
and “hexadecimal” (base 16). For base 16, need more than 10 “digits” to
Slide 8 make idea of positional notation work (tangent — very powerful idea!
compare to Roman numerals), use letters A etc. (uppercase or lowercase).
Conversion is based on some simple if tedious algebra: Group bits, right to
left, in groups of 3 (for octal) or 4 (for hexadecimal), and factor out a power of

8 or 16 from each group.

o Note — can also convert directly to/from decimal, much as for binary.

CSCI 2321 March 30, 2020

Binary Versus Decimal (Review?), Continued

e Terminology: “Least significant” and “most significant” bits.

e Seems like there would be one obvious way to store the multiple bytes of one
of these in memory, but no: “big endian” versus “little endian” (names from

Gulliver’s Travels).

Slide 9

Representing Integers (Review)

e Representing non-negative integers straightforward: Convert to binary and

pad on the left with zeros.
o What about negative integers?

e Could try using one bit for sign, but then you have +0 and -0, and there are
Slide 10 other complications.

e Or...consider analogy of a car odometer: Representable numbers form a
circle, and adding 1 to largest number yields 0.

CSCI 2321 March 30, 2020

~N

Representing Integers (Review), Continued

e Could implement the car-odometer idea in binary, and then choose where to
“cut the circle” (between smallest and largest):
— Between 0 and all ones — unsigned integers.
— Between largest number with 0 as the MSB and smallest number with 1 as

Slide 11 MSB — “two’s complement” signed integers.

o Note: With this scheme +1/-1 moves “around the circle” — nothing special

needed for negative numbers.

4)

Representing Integers (Review), Continued

e Note: If we have » bits, adding 2™ to = gives us = again. Leads to an easy

way to compute —z: Compute 2™ —z, and note that
2" —x = (2" —1)—z+1
which is very easy to compute ...

Slide 12 e (This is the familiar(?) method of “flipping the bits” and adding 1. Not magic!)

CSCI 2321 March 30, 2020

Signed Versus Unsigned

e |f we have n bits, can use them to represent signed values. (What range?)
Or can use them to represent non-negative values only (“unsigned values”).

(What range?)

e Many MIPS instructions have “unsigned” counterparts — addu, addiu,
Slide 13 sltu, etc.
o Example: Suppose we have

0x00000000in $t0

Oxfffffff2instl

What happens if we execute s1t $t2, $t0, $tl1?

What happens if we execute s1tu $t2, $t0, S$tl?

(Same bits, different interpretations!)

4)

Sign Extension (Review?)

e |f we have a number in 16-bit two’s complement notation (e.g., the constant in
an |-format instruction), do we know how to “extend” it into a 32-bit number?

For non-negative numbers, easy.

For negative numbers, also not too hard — consider taking absolute value,

Slide 14 extending it, then taking negative again.
e In effect — “extend” by duplicating sign bit.

o (Note that not all instructions that include a 16-bit constant do this.)

CSCI 2321 March 30, 2020

Two’s Complement and Addition/Subtraction (Review)

e Addition in binary works much like addition in decimal (taking into account the
different bases). Note what happens if one number is negative.

e Subtraction could also be done the way we do in decimal. But could also
compute a—b as a+(—b), which makes for simpler hardware (more about this

Slide 15 soon).

~N

Integer Addition/Subtraction and Overflow

e |f adding two n-bit numbers, result can be too big to fit in n bits — “overflow”.
e For unsigned numbers, how could we tell this had happened?

o How about for signed numbers?

Slide 16

CSCI 2321 March 30, 2020

Addition/Subtraction and Overflow, Continued

Note that we can’t get overflow unless input operands have the same sign.

If we add two positive numbers and get overflow, how can we tell this has
happened?

If we add two negative numbers and get overflow, how can we tell this has
Slide 17

happened?
o (Figure 3.2 in textbook summarizes.)
Addition/Subtraction and Overflow, Continued
o When we detect overflow, what do we do about it?
e From a HLL standpoint: ignore it, crash the program, set a flag, etc.
e To support various HLL choices, MIPS architecture includes two kinds of
addition instructions:
Slide 18

— Unsigned addition just ignores overflow.

— Signed addition detects overflow and “generates an exception” (interrupt):
Hardware branches to fixed address (“exception handler”), usually
containing operating-system code to take appropriate action.

CSCI 2321 March 30, 2020

Addition/Subtraction and Overflow, Continued

e C can ignore overflow (may depend on implementation — “undefined
behavior’?). So a real C compiler for MIPS might use unsigned arithmetic.

e Examples in the textbook don’t do this, perhaps to keep things simpler. SPIM

also apparently ignores overflow.

Slide 19
Implementing Arithmetic — Preview
e In next chapter, start talking about hardware design (though still at a
somewhat abstract level).
e For now, may be useful to know that the low-level building blocks are entities
that can evaluate Boolean expressions(!).
Slide 20 e So for example, can implement addition by first making a “one-bit adder” that

maps three inputs (two operands and carry-in) to two outputs (result and
carry-out), and then chaining together 32 of them. (Figures B.5.2, B.5.7.)

e Multiplication and division, however, may need to be more complex, involving

multiple steps and control-flow logic.

10

CSCI 2321 March 30, 2020

Multiplication

o (First discuss simple “humans can understand this” / proof of concept
approach.)

e As with addition, first think through how we do this “by hand” in base 10.
(Example, briefly.)

Slide 21 e Can do the same thing in base 2, but it's simpler, no? computing the partial

results is easier. (More next time.)

Multiplication, Continued

e In MIPS architecture, 64-bit product / work area kept in two special-purpose
registers (Lo and hi). Two instructions needed to do a multiplication and get

the result:

mult rsl, rs2
fl

Slide 22 mElo rdest

Assembler provides a “pseudoinstruction”:

mul rdest, rsl, rs2

e Note, however, that a “smart” compiler might turn some multiplications into
shifts. (Which ones?)

11

CSCI 2321 March 30, 2020

Division
® (Again, first discuss simple “humans can understand this” / proof of concept

approach.)

e As with other arithmetic, first think through how we do this “by hand” in
base 10. (Example, briefly.)

Slide 23 e Can do the same thing in base 2. More next time.

Division, Continued

e In MIPS architecture, 64-bit work area for quotient and remainder kept in
same two special-purpose registers used for multiplication (Lo and h1i).
After division, quotient in 1o and remainder in hi. Two (or more) instructions
needed to do a division and get result:

i 1 2
Slide 24 div rsl, rs
mflo rg
mfhi rr
Assembler provides a “pseudoinstruction”:

div rdest, rsl, rs2

o Note, however, that a “smart” compiler might turn some divisions into shifts.
(Which ones?)

12

CSCI 2321 March 30, 2020

e As noted, | had what | thought were reasonable reasons for asking you to do
the exam in real time at a fixed time. How did that work for you? Were you
able to actually focus on the exam during one of those two times?

e |f you turned in a PDF, how did you produce it? exam on paper and then scan,
Slide 25 edit PDF in place (with what tool?), ...?

o Any comments right now about content? I'll probably ask again when | return
them (probably by putting something in your “graded work” folders).

13

