
CSCI 2321 April 1, 2020

Slide 1

Administrivia

• Headline news is getting scary these days. Almost makes me wonder

whether to just ignore it? though that doesn’t seem like a great idea either.

We in CS understand what “exponential growth” is, so we worry more?

• Agreed? Let’s try a Zoom “show of hands . . .

Slide 2

More Administrivia

• Quiz 4 deferred.

• I’m realizing that we only have four weeks left and some important material.

So I’ll try to resist temptation to spend too much time on non-essentials —

such as the fairly complete discussion of how to do multiplication and division

with plausible hardware, and more details about floating-point. Summary of

all that today, then move on.

• One thing that wil help us is a move from truly in-class exams to — whatever.

I’m not quite sure about Exam 2, but I think it doesn’t make sense to make it

happen before the end of classes as planned. Possibly sort-of-in-class during

scheduled exam period(s).

1



CSCI 2321 April 1, 2020

Slide 3

Endianness, Revisited

• Recall from last time that architectures can differ with regard to the order in

which they store bytes of integer values.

(Sample program show-int.c shows which one x86 apparently uses.)

Slide 4

Multiplication, Revisited

• (First discuss simple “humans can understand this” / proof of concept

approach.)

• Terminology: In a×b, call a the “multiplicand” and b the “multiplier”.

• As with addition, first think through how we do this “by hand” in base 10.

(Example last time.)

• (Relatively) simple “humans can understand this” algorithm based on how

humans do this without calculators shown in Figures 3.3 and 3.4 (Figure 3.5

is an optimized version). Note that Figure 3.3 also says how to initialize. What

is all of this doing . . .

(“ALU” here is something that can do simple arithmetic and logic operations.)

2



CSCI 2321 April 1, 2020

Slide 5

Multiplication — Big Picture(?)

• Set up work area to hold running total of partial products.

• Compute for each bit of multiplier its product with the multiplicand (i.e., a

partial product). Easy since it’s either the multiplicand or 0. Shift appropriate

number of positions left and add to running total.

Do this by repeatedly shifting multiplicand left and multiplier right. (Use

additional work areas to do this.)

• (Working through example omitted for reasons of time.)

Slide 6

Multiplication, Continued

• Approach works and is implementable, but is slow.

Can do better by computing partial products in parallel and then combining

them in a way that also takes advantage of obvious(?) opportunity for

parallelism. Impractical when chips were less complex; became feasible

when hardware designers had more transistors to work with!

(A few more details in textbook, if you’re curious. Reasonable summary in

Figure 3.7.)

3



CSCI 2321 April 1, 2020

Slide 7

Division, Revisited

• (First discuss simple “humans can understand this” / proof of concept

approach.)

• Terminology: Divide “dividend” a by “divisor” b to produce quotient q and

remainder r, where a=bq+r and 0≤|r|<b.

• (Relatively) simple “humans can understand this” algorithm loosely based on

how humans do this without calculators. (Example, briefly.) Shown in

Figures 3.8 and 3.9. Note that Figure 3.8 also says how to initialize. What is

all of this doing . . .

(“ALU” here is something that can do simple arithmetic and logic operations.)

Slide 8

Division — Big Picture(?)

• Keep a sort of running total that reflects part of dividend we haven’t divided

yet (“running remainder”?). Also keep a shifted copy of divisor, initially shifted

to match high-order bits, and a work area to build the quotient in.

• Repeatedly try subtracting shifted divisor from running remainder. If it “goes

into”, record a bit in the quotient and keep the result of the subtraction. If it

doesn’t, undo the subtraction. Either way, then shift the divisor to the right and

the quotient left and repeat (fixed number of times).

• (Working through example omitted for reasons of time.)

4



CSCI 2321 April 1, 2020

Slide 9

Division, Continued

• Here too, approach works but is slow. Speeding it up . . .

• Not as simple as with multiplication (is it apparent why?). Textbook says

current hardware can still take some advantage of parallelism by computing

some things speculatively. More in textbook if you’re curious!

Slide 10

Representing Non-Integer Numbers (Review)

• Usual approach is “floating-point”, based on binary version of “scientific

notation”:

In base 10, can write numbers in the form +/−x .yyyy×10
z.

E.g., 428=4.28×10
2, or −.0012=−1.2×10

−3.

• Can do the same thing in base 2. Examples:

32=1.02×2
5

−3=−1.12×2
1

1/2=1.02×2
−1

3/8=1.12×2
−2

• This is “floating point” (as opposed to “fixed point”, which would allow for

non-integers but wouldn’t allow as much flexibility).

5



CSCI 2321 April 1, 2020

Slide 11

Floating Point (Review)

• In base 10, can completely specify a nonzero number by giving its sign, a

number in the range 1≤x<10 (the “significand” or “mantissa”), and the

exponent for 10. Same idea applies in base 2.

• So, most/all “floating-point formats” have a bit for the sign, some bits for the

significand, and some bits for the exponent. Different choices are possible,

even with the same total number of bits; (at least) one architecture (VAX)

even supported more than one format with the same number of bits(!).

• With integers, number of bits limits the range of numbers that can be

represented. With “floating-point” numbers, two sets of limits: number of bits

for the significand (which limits what?), and number of bits for the exponent

(which limits what?).

(Does this suggest why the VAX designers offered two formats?)

Slide 12

Floating Point (Review), Continued

• Most architectures these days use one or more of the floating-point formats

defined by the IEEE 754 standard. Wikipedia article seems good. Many “who

knew?” details!) Two things worth noting:

• Since first bit is (almost!) always 1, can omit it and get one extra bit.

(Exception? special representation for that case.)

• Exponent is stored in “biased” form. Why? because then all exponents are

non-negative, and comparisons are faster. (This speeds up sorting —

perhaps why it’s done this way?)

• (Working through an example attractive but for reasons of time we won’t.)

6



CSCI 2321 April 1, 2020

Slide 13

Floating Point Arithmetic

• Arithmetic on floating-point values is, maybe no surprise, a bit complicated.

• Textbook shows algorithms in flowchart form. For now, skim the discussion of

steps (Figures 3.14, etc.) but skip more-detailed explanation (Figures 3.15,

etc.). (We may come back to the detailed versions later when they may make

more sense.)

Slide 14

Floating Point in MIPS Architecture

• Architecture supports IEEE 754 “single” (32 bits) and “double” (64 bits).

• Architecture defines 32 floating-point registers ($f0 through $f31), used

singly for single-precision, in pairs for double-precision.

7



CSCI 2321 April 1, 2020

Slide 15

MIPS Floating-Point Instructions

• Arithmetic instructions (single-precision):

Basics: add.s, sub.s, mul.s, div.s.

Interesting extras: abs.s, neg.s, sqrt.s.

All have double-precision counterparts (replace .s in name with .d).

• Load/store instructions:

Single-precision lwc1, swc1.

Double-precision ldc1, sdc1 (pseudoinstructions).

Pseudoinstructions li.s, li.d.

Slide 16

MIPS Floating-Point Instructions, Continued

• Comparisons:

c.eq.s, c.lt.s, etc., plus double-precision counterparts.

These set a bit true/false, which can be used by bc1t, bc1f.

• Data copying:

mov.s, mov.d to copy from one (pair of) register(s) to another.

mtc1, mfc1 to copy from general-purpose register to floating-point register

and vice versa. NOTE that this just copies bits!

• Conversion between integer and floating point:

cvt.w.s, cvt.s.w, and double-precision counterparts.

8



CSCI 2321 April 1, 2020

Slide 17

Floating Point in MIPS, Continued

• Some instruction names include c1. Short for “coprocessor 1”. What’s that?

well, as textbook mentions, once upon a time chips for PC-class machines

didn’t have enough transistors to implement floating-point arithmetic, so if it

was included in the hardware at all, it was as a separate chip (“coprocessor”).

This may also explain why there are distinct floating-point registers. Now a

thing of the past, but the name stuck.

• “If at all”? was it not possible on machines without floating-point hardware to

do floating-point arithmetic? Well . . . (Minute-essay question.)

Slide 18

Example Programs

• Several examples on course Web site. For reasons of time I won’t work

through them in class, at least not now!

9



CSCI 2321 April 1, 2020

Slide 19

Designing a Processor — Overview

• Goal of Chapter 4: Sketch design of a hardware implementation of MIPS

architecture in terms of some simple building blocks (AND and OR gates,

inverters). (Actually only a small subset of instructions, but enough to give

you the idea?)

• May be useful to keep in mind the goal. We need something that can

– Provide short-term storage of values (registers).

– Perform arithmetic and logical operations on these values.

– Provide longer-term storage of values (memory).

– Transfer data between registers and memory.

– Repeatedly fetch and execute instructions, allowing for both sequential

execution and branching/jumps.

Slide 20

Circuit Design — Overview

• AND and OR gates implement Boolean-algebra functions of the same names;

inverter implements “not”.

• Short executive-level summary of how this works in current technology next

time I hope!

10



CSCI 2321 April 1, 2020

Slide 21

Minute Essay

• Now that you know what’s involved in multiplication and division, does it make

more sense to use shifts rather than multiplication when you can?

• It turns out that a smart compiler could also optimize multiplication by

constants other than powers of 2. Any thoughts on how that might work?

Slide 22

Minute Essay Answer

• I hope so!

• If the compiler is smart enough, it could for example compile

n *= 5;

as, e.g.,

sll $t0, $s0, 2 # n*4

add $s0, $t0, $s0 # +n

11


