
CSCI 2321 (Computer Design), Spring 2021

Homework 4

Credit: 25 points.

1 Reading

Be sure you have read, or at least skimmed, all assigned readings from Chapter 2 and Appendix A.

2 Problems

Answer the following questions. You may write out your answers by hand and scan them, or you
may use a word processor or other program, but please submit a PDF or plain text via e-mail to
my TMail address. (No links to shared files on Google Drive please.) Please use a subject line that
mentions the course and the assignment (e.g., “csci 2321 hw 4” or “computer design hw 4”).

1. (5 points) Consider this fragment of MIPS code, intended to be a typical MIPS version of
if/else:

slt $t0, $s1, $s2

beq $t0, $zero, Else

addi $s3, $s3, 1

addi $s4, $s4, 1

j After

Else:

addi $s3, $s3, -1

addi $s4, $s4, -1

After:

Translate the beq and j instructions into machine language, assuming that the first instruction
is at memory location 0x00400040. (You don’t have to translate the other instructions, just
those two. As in Homework 2, first list all the fields (e.g., opcode) in binary and then give
the 32-bit instruction in hexadecimal.)

2. (5 points) The MIPS assembler supports a number of pseudoinstructions, which look like
regular instructions but which assemble into one or more other machine instructions. We’ve
seen how SPIM assembles the la pseudoinstruction into a combination of lui and ori. As
another example, pseudoinstruction ble generates two instructions, a slt and then a bne,
using “assembly temporary” register $at, with

ble $t0, $t1, There

being translated to

slt $at, $t1, $t0

beq $at, zero, There

1

CSCI 2321 Homework 4 Spring 2021

If you wanted the assembler to support the following pseudoinstructions, say what code (using
real instructions) the assembler should generate for the given examples. As with ble, you
should use $at if you need an additional temporary register.

• bnz with the two operands (register number and target label/address), that branches to
the target if the register contents are nonzero. Example:

bnz $s0, There

• swap with two register-number operands, which exchanges the values in the two registers.
Example:

swap $s0, $s1

3. (15 points) (Note: This problem may initially look intimidating, but if you take it step by
step I think you will find it manageable.)

For this problem your mission is to reproduce by hand a little of what an assembler and
linker would do with two fairly meaningless1 pieces of MIPS assembly code. The textbook
has an example starting on p. 132 illustrating more or less what I have in mind here, and we
reviewed the example in class, but on reflection it doesn’t seem that clear to me, so for this
assignment I want you to approach the problem a little differently.

First, the two files:

• procMain.s.

• procSub.s.

I worked through a much longer example; results are in this directory. (There is also a zip

file of the whole directory here.)

(a) For the “assembly” phase, I don’t want you to actually translate the instructions into
machine language, but I do want you to construct for each file a human-readable version
of the symbol table and relocation information that would be in the object file, with
information as listed below.

Note that you will need to expand the two la pseudoinstructions. The example in the
textbook doesn’t really show how to do this; they instead show how to deal with lw

and sw referencing a symbol and assembled into something using the $gp register. How
that works is a bit unclear, and SPIM is no help, but for this problem I’m going to
bypass that whole can of worms and just ask you to work with la, which expands to lui

followed by ori. (You can see examples of this by loading any of the sample programs
that use la into SPIM and looking at what it shows for code.)

(Hint: Before going further, you’ll probably find it useful to produce annotated versions
of each .s file, showing offsets of each instruction in the text segment and each variable
in the data segment. Note that this means actual machine instructions, so you’ll need
to expand any pseudoinstructions.)

(In the example, the two source code files are file1.s and file2.s, and the annotated
versions are file1-annotated.txt and file2-annotated.txt.)

Then produce, for each of the two source files, the following:

(Use hexadecimal to represent addresses and offsets. Don’t panic if you find hexadecimal
hard to work with; the example directory contains a little Scala script and a snippet of

1 They don’t do anything very interesting, but together they do represent a complete program.

2

http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2021spring/Homeworks/HW04/Problems/procMain.s
http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2021spring/Homeworks/HW04/Problems/procSub.s
http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2021spring/Homeworks/HW04/Problems/example/index.html
http://www.cs.trinity.edu/~bmassing/Classes/CS2321_2021spring/Homeworks/HW04/Problems/example.zip

CSCI 2321 Homework 4 Spring 2021

Scala you could use interactively, either of which should make it easier if still a bit
tedious.)

• Text (code) and data sizes, in hexadecimal.

• “Relocation information”: For each instruction that involves an absolute address
(jumps involving an address, and the instructions corresponding to a la pseudoin-
struction):

– Its offset in the text segment.

– The instruction type (as in the textbook example).

– The symbol referenced (“dependency” in the textbook example).

• A symbol table listing all symbols, defined or not. For defined labels, give its location
(which segment, offset) and whether it’s global or local. For undefined labels, just
say it’s undefined.

(In the example, the results are in file1-relocation.txt and file2-relocation.txt

and file1-symbols.txt and file2-symbols.txt.)

(A real assembler would probably try to resolve references to local symbols at this point,
but for simplicity I want you to just resolve them all in the next step.)

(b) Next, “link” the two object files, for an executable with the text and data segments start-
ing where SPIM puts them, at 0x00400024 and 0x10010000 respectively. (So absolute
addresses into the two segments can be based on these values.) Specifically, show:

• Sizes of combined segments (text and data).

• “Patched” versions of instructions that couldn’t be correctly and completely assem-
bled at assembly time.

To generate the patched instructions, I recommend that you:

• Create a combined list of symbols (file combined-sizes-and-symbols.txt in the
example).

• Create a combined list of instructions to patch, from the relocation information (file
instructions-to-patch.txt in the example).

• Use those two lists to produce a list of patched instructions (file patched.txt in the
example).

3 Pledge

For programming assignments, this section should go in the body of the e-mail or in a plain-text
file pledge.txt (no word-processor files please). For written assignments, please put it in the text
or PDF file with your answers.

Include the Honor Code pledge or just the word “pledged”, plus at least one of the following
about collaboration and help (as many as apply). Text in italics is explanatory or something for
you to fill in.

• I did not get outside help aside from course materials, including starter code, readings, sample
programs, the instructor.

• I worked with names of other students on this assignment.

• I got help with this assignment from source of help — ACM tutoring, another student in
the course, etc. (Here, “help” means significant help, beyond a little assistance with tools or
compiler errors.)

3

CSCI 2321 Homework 4 Spring 2021

• I got help from outside source — a book other than the textbook (give title and author), a
Web site (give its URL), etc.. (Here too, you only need to mention significant help — you
don’t need to tell me that you looked up an error message on the Web, but if you found an
algorithm or a code sketch, tell me about that.)

• I provided help to names of students on this assignment. (And here too, you only need to tell
me about significant help.)

4 Essay

For programming assignments, this section should go in the body of the e-mail or in a plain-text
file pledge.txt (no word-processor files please). For written assignments, please put it in the text
or PDF file with your answers.

Include a brief essay (a sentence or two is fine, though you can write as much as you like) telling
me what if anything you think you learned from the assignment, and what if anything you found
interesting, difficult, or otherwise noteworthy.

4

