
CSCI 2321 February 3, 2021

Slide 1

Administrivia

• Reminder: Reading quiz due Monday.

• Homework 1 posted; due a week from Monday (but I say do it earlier if you

can).

Slide 2

Recap/Review

• Last time I briefly discussed the first few sections of Chapter 1, trying to focus

on what parts you should read and what parts can be skimmed.

• Expanding on that a bit . . .

1



CSCI 2321 February 3, 2021

Slide 3

Abstraction

• Idea of abstraction used over and over in CS, Goal is often to “manage

complexity” by dividing big complicated problem into manageable parts.

Layered abstractions especially useful for that.

• Software example: If designing an online-shopping application, you might

design in terms of a rather abstract “shopping cart”, and think later or

separately about how to implement the abstraction (e.g., with a collection data

type). Details of implementation could be changed without affecting top-level

design.

• Same idea can be used in hardware, for the same reasons.

Slide 4

Abstraction in Hardware — ISA

• Instruction set architecture (ISA or architecture): a definition/specification of

how the hardware behaves, detailed enough for programming at

assembly-language level.

E.g, “x86 architecture”, “MIPS architecture”, “IBM 360 architecture”.

• Implementations of an architecture: actual hardware that behaves as defined.

Can have many implementations of an architecture, allowing the same

program executable to run on (somewhat) different hardware systems.

E.g., Intel chips, IBM 360 family of processors.

2



CSCI 2321 February 3, 2021

Slide 5

Abstraction in Hardware — ABI

• “Application Binary Interface” (ABI) is a somewhat broader term.

• Includes ISA and and other details of how programs are translated into

something the computer can execute, how they interact with their

environment. (A bit more about this later.)

Slide 6

Compiling and Executing Programs — Recap/Review

• Several ways source code can be executed:

• Interpreted directly (e.g., shell scripts).

• Compiled to intermediate form, interpreted/executed by

possibly-language-specific runtime system (e.g., Scala and Java).

• Compiled to “native code” (machine language), usually producing

“executable”, and executed. (We will focus on this one — referred to as

“compiling to native code”.)

3



CSCI 2321 February 3, 2021

Slide 7

Running Executable Files — Overview

• What a processing element can do is fetch machine-language instructions

from memory (RAM) and execute them, one at a time. That’s it! (Caveat:

Conceptually this is what’s going on, though current processors include

performance enhancements that mean it’s something of a simplification.

Good enough for now!)

• So to execute a program: Somehow get machine-language instructions into

memory and transfer control to a starting instruction.

• Most (not all, but most!) platforms involve an operating system. which reads

executable file from storage device into memory and transfers control to its

first instruction.

Slide 8

From Programs to Execution — Compiling, Assembling

• Source code translated into assembly language (symbolic representation of

machine language) via a compiler. Compilers can be quite complicated,

especially if goal is code that’s not only correct but also efficient. Worth noting

that all compilers for a platform generally follow some conventions that make

it easy for subprograms in different languages to call each other. Details are

part of ABI.

• Assembly language then converted to object code (machine language, plus

other information) via an assembler. Assemblers are much simpler!

• “Other information” in object code includes such details as information about

calls to library functions. Format of object code is part of ABI.

4



CSCI 2321 February 3, 2021

Slide 9

From Programs to Execution — Linking

• Linker combines object code from multiple sources, including libraries, to form

an executable file, which also consists of machine language plus other

information. In static linking, resulting machine language includes all library

code. In dynamic linking, some references to library code may get turned into

something that gets resolved when the program is started. (More about this

later.)

• Executable file’s “other information” includes program size, location of starting

instruction information about any references to library code not included in the

executable. Format of this file also part of ABI.

Slide 10

From Programs to Execution — Loading/Executing

• At runtime, operating system loads machine language from executable file,

resolves any calls to dynamically-linked library code, transfers control to

starting instruction.

• At that point, processor is executing machine language for program. Typically

application programs not allowed to do certain things (e.g., I/O) directly;

instead they make requests of operating system. Details of how they do that

and what services are available are also part of the ABI.

5



CSCI 2321 February 3, 2021

Slide 11

A Little About Integrated Circuits — Conceptual View

• Transistor — on/off switch controlled by electrical current. (Number of

transistors is what Moore’s law says doubles . . . Well, it used to be every two

years but pace seems to be slowing.)

• Combine/connect a lot of transistors to get circuit that does interesting things

(e.g., addition). At least conceptually, circuits are built up from “logic gates” —

simplest are NOT, AND, and OR, pretty much same as Boolean algebra.

• Put a bunch of circuits together to get a chip / integrated circuit (IC). If lots of

transistors, VLSI chip.

Slide 12

A Little About Integrated Circuits, Continued

• Manufacturing process starts with a thin flat piece of silicon, adds metal and

other stuff to make wires, insulators, transistors, etc.

• Of course, this is all automated! Low-level chip designers use CAD-type tools,

which save designs in a standard format, which the chip designers

simulate/test with other software, and then send off to be fabricated. (These

days, at least some design is done more or less by programming, using a

notation that describes what the circuit does.)

• Typically make many chips on a wafer, discard those with defects, bond each

good one to something larger with pins to allow connections to other parts of

computer.

6



CSCI 2321 February 3, 2021

Slide 13

Defining Performance

• What does it mean to say that computer A “has better performance than”

computer B?

• Really — “it depends”. Some answers:

– Computer A has better response time / smaller execution time.

– Computer A has higher throughput.

• Trickier than it might seem to come up with one number that means

something!

Slide 14

Evaluating / Comparing Performance — Approaches

• Use the actual workload, on the actual hardware platform(s), and compare

times.

• Put together a representative simulated workload (“benchmark”); run and

compare times.

• Compare code size.

• Compare number of instructions per second (“MIPS” or “MFLOPS”, once).

7



CSCI 2321 February 3, 2021

Slide 15

Evaluating / Comparing Performance, Continued

• Alas, all the methods just mentioned are flawed in some way.

(In particular, paraphrasing someone whose name I don’t remember, “peak

MIPS is just the number you can’t go any faster than.”)

• Textbook chooses to focus in this chapter on “execution time”. Might not be

meaningful for comparing systems but seems like reasonable way to compare

processors at least.

Slide 16

Measuring Performance

• If we use execution time as criterion, how to measure?

• Wall-clock time seems fairest, since it includes

– Time for CPU to execute instructions.

– Any waiting for memory access.

– Any waiting for I/O.

– Any waiting for operating system.

• Is that easy to measure reliably / repeatably?

8



CSCI 2321 February 3, 2021

Slide 17

Measuring Performance, Continued

• No — to get repeatable measure of wall clock time, need an otherwise

unused system.

• So instead we could use “CPU performance” — amount of time CPU needs to

run program. Easier to measure, more consistent, and at least says

something about the processor.

• Even that, though, is not as simple as it might seem.

Slide 18

Defining Performance

• Textbook chooses to focus on CPU (processor) time, and say

PerformanceA
PerformanceB

= n

exactly when

Execution timeB
Execution timeA

= n

(Key equation!)

9



CSCI 2321 February 3, 2021

Slide 19

Sidebar: Clocking and Cycles

• Circuits in typical chip are “clocked” — all parts kept in synch by something

that ticks so many times per second. Each tick is a “clock cycle”. Each

instruction takes one or more cycles. More about this later.

• Clock frequency typically expressed (these days) in gigahertz (GHz, 109 ticks

per second).

Slide 20

Calculating Program Execution Time (CPU Only)

• CPU execution time for program X is given by

CPU cycles× clock cycle time

and then CPU cycles in turn is the product of count of instructions and cycles

per instruction.

• And then it might seem like we can say something meaningful about what

happens if we change one of these numbers — but only if all other things

remain the same, which might or might not be true!

10



CSCI 2321 February 3, 2021

Slide 21

Calculating Program Execution Time, Continued

• Starting from the basic equation

CPU cycles× clock cycle time

we can expand a bit to get

instruction count× cycles per instruction × clock cycle

• We can then come up with many variations — e.g., one that uses clock rate

rather than clock cycle time — based largely on consideration of units of

measure (e.g., clock cycle time is seconds per cycle, while clock rate is cycles

per second).

Slide 22

Calculating Execution Time — Example

• Given the following about some program P:

– On computer A, execution requires 2× 109 instructions, Instructions take

3 cycles each, and clock rate is 1GHz (so cycle time is 1/109).

– On computer B, execution requires 1.5× 109 instructions, instructions

take 5 cycles each. and clock rate is also 1GHz.

• Calculate execution times for P . . .

11



CSCI 2321 February 3, 2021

Slide 23

Calculating Execution Time — Example Continued

• Execution times:

– On computer A, 2× 109 × 3× 10−9, i.e., 6

– On computer B, 1.5× 109 × 5× 10−9, i.e., 7.5

• So for P, A’s performance is 1.25 times as good as B’s (7.5/6).

Slide 24

Sidebar: Dimensional Analysis

• (Or at least I think that’s close to the term I want.)

• Idea here is to approach “word problems” in terms of units, treating them

almost like factors in multiplication and division. (Example is converting, say,

inches to cm by multiplying by 1 in the form 2.54cm/1in.)

• If the formula you propose to use produces the right units (e.g., seconds for

execution time), there’s at least a good chance it’s the right one.

12



CSCI 2321 February 3, 2021

Slide 25

Calculating Execution Time, Continued

• One factor in the basic formula is cycles per instruction. What if that isn’t the

same for all instructions?

• Common sense(?) may tell you . . .

• If different types of instructions need different numbers of cycles, have to do

something like a weighted sum. Usually instructions fall into one of a few

“classes”, each with a common number of cycles per instruction.

• So, compute times for each “class” of instruction and add. Would also allow

you to compute an average CPI.

Slide 26

Calculating Execution Time — Example Continued

• Suppose we change computer A so that there are two “classes” of

instructions, a class 2 in which instructions take 2 cycles and a class 4 in

which instructions take 4 cycles, and suppose 3/4 of all instructions are

class 2 while the other 1/4 are class 4.

• Now execution time is

(2× 109 × 3/4)× 2× 10−9+

(2× 109 × 1/4)× 4× 10−9

i.e., 5

• We can also compute average CPI (cycles per instruction) . . .

13



CSCI 2321 February 3, 2021

Slide 27

Calculating Execution Time — Example Continued

• Isn’t average CPI just 3? average of 2 and 4?

• One could define it that way, but more sensible is to also include information

about relative frequencies of the two classes of instructions:

• For a program with N instructions, first compute total number of cycles:

((N × 3/4)× 2) + ((N × 1/4)× 4)

= N × 2.5

and then divide by N to get average CPI of 2.5.

Slide 28

Parallelism (Hardware)

• Executive-level definition of “parallelism” might be “doing more than one thing

at a time”.

• In that sense, it’s been used in processors for a very long time, via pipelining,

and (in some high-performance processors) vector processing. Some also

use instruction-level parallelism. All invisible to programmer!

• For a (relatively!) long time, hardware designers were able to make single

processors faster using these and other techniques (e.g., reducing sizes of

things). In the mid-2000s, however, they ran out of ways to do that. But they

could still put larger numbers of transistors on the chip. How to use that to get

better performance?

14



CSCI 2321 February 3, 2021

Slide 29

Parallelism (Hardware), Continued

• All that time there were people saying we would hit a limit on single-processor

performance, and the only answer would be parallelism at a higher level —

executing multiple instruction streams at the same time.

• So . . . use all those transistors to put multiple cores (processing elements) on

a chip!

• Why wasn’t this done even earlier? because alas the “magic parallelizing

compiler” —- the one that would magically turn “sequential” programs into

“parallel” versions — has proved elusive, and (re)training programmers is not

trivial.

Slide 30

Parallelism — Hardware

• Several ways to achieve “more than one thing at a time” in hardware:

• Multiple independent processing elements sharing memory (multicore

processors, multiple processors).

• “Hyperthreading” — hardware to enable very fast context switching. Not true

concurrency but helps with “hiding latency”.

• Computers connected by a network.

• Multiple processing elements operating in lockstep (e.g., GPU). For GPU,

also involves separate memory, with need to move data back and forth

between it and main RAM.

• (Also forms of parallelism that are invisible to programmer.)

15



CSCI 2321 February 3, 2021

Slide 31

Parallelism — Software

• Multithreading — for multicore processors, multiple processors: Single

“process” (from operating-system perspective) with multiple “threads”

(software streams) interacting via shared single memory space.

• Message-passing — for computers connected by network: Multiple

“processes”, not sharing memory, interacting by sending each other

messages.

• SIMD (“single instruction, multiple data”) — for graphics processing units:

Single software stream, executing in-effect-simultaneously on all elements of

an array (or other coolection?). May require explicit data copying.

Slide 32

Parallelism — Performance

• One use of multithreading is to make the code simpler, at least for the

programmer. (Example: typical GUI-based program, where it makes sense to

think in terms of one thread of control for getting user input and one for

drawing.) Doable on a single processor via interleaving. May improve

performance by “hiding latency”.

• But it can also be used to improve performance. Performance often discussed

in terms of “speedup”.

• Here, “speedup” is defined thus:

For P processing elements (cores, fully independent processors, etc.),

speedup S(P) is execution time using 1 PE to execution time using P PEs.

16



CSCI 2321 February 3, 2021

Slide 33

Parallel Performance, Continued

• Might seem like with P processing elements you could get a speedup of P?

But in fact most if not all programs have at least a few parts that have to be

executed sequentially. This limits S(P), and if we can estimate what fraction of

the program is sequential we can calculate an upper bound on S(P).

• Further, typically “parallelizing” programs involves adding some sort of

overhead for managing and coordinating more than one stream of control.

• But even ignoring those, as long as any part must remain sequential . . .

Slide 34

One More Thing About Performance — Amdahl’s Law

• (Named after Gene Amdahl, a key figure in developing some of IBM’s early

mainframes who left to start his own company to make hardware

“plug-compatible” with IBM’s. Aside: Interaction between the two companies

was — interesting?)

• His observation (“Amdahl’s law”) can be more generally stated, but in the

context of parallel programming it’s this:

If γ is the “serial fraction”, speedup on P PEs is (at best, i.e., ignoring

overhead)

S(P ) =
1

γ + 1−γ

P

and as P increase, this approaches
1

γ
— upper bound on speedup.

17



CSCI 2321 February 3, 2021

Slide 35

Minute Essay

• Suppose you are trying to decide which of two computers, call them Foo and

Bar, will give you the best performance. You run two test programs on Foo

and observe execution times of 10 seconds for one and 20 seconds for the

other. If the first program takes 5 seconds on Bar, how long does the second

program take? (Hint: This might be something of a trick question.)

• Other questions? Be advised that you can ask me anything in a minute essay

(preferably about this class or computer science in general), and I’ll try to

respond.

Slide 36

Minute Essay Answer

• It might seem like that second program would take 10 seconds on Bar, but in

truth you probably can’t be sure without doing the experiment, since the two

machines, or the two test programs, could differ in ways that would make this

obvious answer wrong.

18


