CSCIT 2321 February 22, 2021

Administrivia

e Reading quiz 2 posted; due 03/03. More reading quizzes soon — more than
one for Chapter 2 since it’s long.

Slide 1

4 E-Mail and Me)

o Some of you are curious about why for e-mail to me | ask you to use my TMail
address, but e-mail from me comes from a @cs address, and you ask which

to use, or worry that you get it wrong, or send things to both addresses?
Partly for historical reasons | prefer to deal with mail using the @cs address.
Slide 2 But my TMail address forwards there, so whichever one you use should reach
me.

Sorry about the confusion.

CSCIT 2321 February 22, 2021

What's Next — Overview

e Defining a representative architecture (MIPS): what “architecture” means in
context, assembly language programming, machine language. (This is the
“first half” of the course.)

e Designing a simplified implementation of this architecture. (This is the
Slide 3 “second half”.)

“Architecture” as Interface Definition

e “Architecture” here means “instruction set architecture” (ISA), a key
abstraction.

e From software perspective, “architecture” defines lowest-level building blocks:
what operations are possible, what kinds of operands, binary data formats,
Slide 4 etc.

o From hardware perspective, “architecture” is a specification: Designers must
build something that behaves the way the specification says.

CSCI 2321

February 22, 2021

Slide 5

Architecture — Key Abstractions

o Memory: Long long list of binary “numbers”, encoding all data (including
programs!), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.
(Very powerful concept! Major innovation during early days of digital
computers.)

e Instructions: Primitive operations processor can perform.

e Fetch/execute cycle: What the processor does to execute a program;
repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

e Registers: Fast-access work space for processor, typically divided into
“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point). Unlike memory, these are part of the processor.

Slide 6

Design Goals for Instruction Set

e From software perspective — expressivity.
o From hardware perspective — good performance, low cost.

o (Yes, these can sometimes be opposing forces!)

CSCIT 2321 February 22, 2021

Why Study MIPS Architecture?

e Goal is not to become good assembly-language programmers, but to
understand how things work at this level. Once you understand basic

principles, learning another assembly language is easier.

o MIPS architecture is simple but representative. Not currently used much in
Slide 7 desktop/laptop world but (supposedly) similar architectures popular in
embedded-systems world.

SPIM Simulator

e |t's of course useful as you learn assembly language to be able to try
programs. Various simulators that let you do that. The one | like is SPIM. Old
and a bit clunky but has some features | really like, so it's the one I'll use in
this course.

e Simulates assembly and execution of assembly program; incorporates a very

Slide 8 primitive operating system that makes it possible to do text input/output.

e [nstalled on department’s Linux machine, so easy to use from Linux virtual
desktop. If that doesn’t work for you, can install on your own machine: Now
hosted on Sourceforge.org. Web-search on SPIM and
Sourceforge.org for link or follow the one under “Links” on course
Web site (soon).

e Commands spim and xspim (graphical). Sample programs under
“Sample programs”. More about these, and demo, soon.

CSCIT 2321 February 22, 2021

A Bit About Assembly Language Syntax

e Syntax for high-level languages can be complex. Allows for good expressivity,
but translation into processor instructions is complicated.

e Syntax for assembly language, in contrast, is very simple. Less expressivity
but much easier to translate into (binary form of) instructions.

Slide 9

Arithmetic Instructions — Addition

e Instruction for integer addition (in assembly-language form):
add rl, r2, r3
Adds r2 and r3 giving r1.
(Notice the format — symbolic name, operands.)
Slide 10 ® |s this expressive enough?
e Should we have more instructions (with different numbers of operands, e.g.)?
Basic principle: “Simplicity favors regularity.”
Easier to build simple hardware if ISA is “regular’ — e.g., all arithmetic
instructions have exactly three operands.

e sub (subtraction) similar. Multiplication and division are more complicated,
so punt for now.

o What are the operands? Registers. What are those? Well ...

CSCIT 2321 February 22, 2021

Registers

e Access to main memory slow compared to processor speed, so useful to
have a within-the-chip work space — “registers”.

o MIPS architecture defines 32 “general-purpose” registers, each 32 bits.
Essentially interchangeable except for $0 (always zero) and $31 (used by

hardware to support procedure calls).
Slide 11 pportp)

o Would more be better?
Basic principle: “Smaller is faster.”

e In machine language, reference by number.

e In assembly language, useful to adopt conventions for which registers to use
for what, define symbolic names indicating usage.

E.g., use registers 8 through 15 for “temporary” values (short-term), refer to
as $t 0 through St 7.

\. J

High-Level Languages Versus Assembly Language

e In a high-level language you work with “variables” — conceptually, names for
memory locations. Can do arithmetic on them, copy them, etc.

e In machine/assembly language, what you can do may be more restricted —
e.g., in MIPS architecture, must load data into a register before doing

Slide 12 arithmetic.

o Compiler’s job is to translate from the somewhat abstract HLL view to
machine language. To do this, normally associate variables with registers —
load data from memory into registers, calculate, store it back. A “good”
compiler tries to minimize loads/stores.

CSCIT 2321 February 22, 2021

Example

e Textbook gives detailed example of arithmetic on registers on p.73
(section 2.3).

e (Where do values come from? Next topic ...)

Slide 13
Memory, Revisited
e Usually think of memory as big 1D array of 8-bit “bytes”, each with address
(index into array) and contents (value of array element).
e Often operate on elements in larger units. For MIPS, natural unit is 32-bit
“word”. (Other architectures also often operate on words. 32 bits was
Slide 14 common until recently; 64 bits more so now.)

e MIPS is a “load/store” architecture — access to memory limited to copying
data between memory and registers. Alternatives include arithmetic
instructions to operate on memory directly.

CSCIT 2321 February 22, 2021

Memory-Access Instructions — Load

e Goal is to get one 32-bit word from memory and put in a register.

o How to specify location in memory? Seems most useful to have address in a
register. For a little more flexibility, specify address in terms of “base” and
“displacement”.

Slide 15 1w r, d(b)

Address specified by contents of register b plus (constant) d. Loads word
into register r.

e sw (“store word”) instruction similar.

Example

e Textbook gives detailed example of loading with fixed displacement on p.75
(section 2.3).

e Fine for accessing elements of st ruct. What about array elements?
Compute address by computing displacement and adding to base address.
Slide 16 Example on next slide.

CSCIT 2321 February 22, 2021

Array Element Access — Example

e Suppose register $s1 contains the address of an array A of 32-bit integers,
and register $s2 contains the value of a variable i. We could use the
following to load the value of A [1] into register $t 0 (keeping in mind that
addresses are in bytes, and each array element occupies 4 bytes):

. add $t0, $s2, $s2 # $t0 <— 2+i
Slide 17
add $t0, $t0, $tO # $t0 <— 4xi
add $tl, $t0, $sl # S$tl <- &A[1]
1w $t0, 0($tl)
Array Element Access, Continued
e [sn’t there a multiply instruction we could use instead of double addition??
yes, but it’s likely to be quite slow. Bit-shifting is better — to be discussed
soon.
e And Yes, for a programmer it would be great if it were possible to load from an
Slide 18 address given via a base address in one register and an index in another, but

it's not Not sure why; maybe too much for single instruction.

CSCIT 2321 February 22, 2021

Addition Using Constant

e “Add immediate”
addi rl, r2, c
adds constant c (16-bit signed integer, can be negative) to contents of r2,
puts resultin r1.

Slide 19 o Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

Representing (Integer) Data in Binary

o Remember that to the hardware “it’s all ones and zero” — any data you're

working with.

e As an example — representation of signed integers using two’s complement
notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you
Slide 20 don’t remember.

o Note that how bytes are stored in memory (least-significant first or last) not
same in all ISAs: “Big-endian” (MIPS) versus “little-endian”. Names come

from Gulliver’s Travels.

10

CSCIT 2321 February 22, 2021

MIPS Assembly Language Program Structure

e (Time permitting.)

Look at starter. s under “sample programs” on course Web site.

Overall structure mixes instructions and “directives” (things that start with .).
Programs typically have two sections, one for code (starting with . text
Slide 21 directive) and one for data (starting with . data).

For now, ignore “opening linkage” and “closing linkage”. Most of the rest
should seem at least sort of plausible? (More soon.)

e Anything today that was particularly unclear?

Slide 22

11

