
CSCI 2321 February 22, 2021

Slide 1

Administrivia

• Reading quiz 2 posted; due 03/03. More reading quizzes soon — more than

one for Chapter 2 since it’s long.

Slide 2

E-Mail and Me

• Some of you are curious about why for e-mail to me I ask you to use my TMail

address, but e-mail from me comes from a @cs address, and you ask which

to use, or worry that you get it wrong, or send things to both addresses?

Partly for historical reasons I prefer to deal with mail using the @cs address.

But my TMail address forwards there, so whichever one you use should reach

me.

Sorry about the confusion.

1

CSCI 2321 February 22, 2021

Slide 3

What’s Next — Overview

• Defining a representative architecture (MIPS): what “architecture” means in

context, assembly language programming, machine language. (This is the

“first half” of the course.)

• Designing a simplified implementation of this architecture. (This is the

“second half”.)

Slide 4

“Architecture” as Interface Definition

• “Architecture” here means “instruction set architecture” (ISA), a key

abstraction.

• From software perspective, “architecture” defines lowest-level building blocks:

what operations are possible, what kinds of operands, binary data formats,

etc.

• From hardware perspective, “architecture” is a specification: Designers must

build something that behaves the way the specification says.

2

CSCI 2321 February 22, 2021

Slide 5

Architecture — Key Abstractions

• Memory: Long long list of binary “numbers”, encoding all data (including

programs!), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.

(Very powerful concept! Major innovation during early days of digital

computers.)

• Instructions: Primitive operations processor can perform.

• Fetch/execute cycle: What the processor does to execute a program;

repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

• Registers: Fast-access work space for processor, typically divided into

“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point). Unlike memory, these are part of the processor.

Slide 6

Design Goals for Instruction Set

• From software perspective — expressivity.

• From hardware perspective — good performance, low cost.

• (Yes, these can sometimes be opposing forces!)

3

CSCI 2321 February 22, 2021

Slide 7

Why Study MIPS Architecture?

• Goal is not to become good assembly-language programmers, but to

understand how things work at this level. Once you understand basic

principles, learning another assembly language is easier.

• MIPS architecture is simple but representative. Not currently used much in

desktop/laptop world but (supposedly) similar architectures popular in

embedded-systems world.

Slide 8

SPIM Simulator

• It’s of course useful as you learn assembly language to be able to try

programs. Various simulators that let you do that. The one I like is SPIM. Old

and a bit clunky but has some features I really like, so it’s the one I’ll use in

this course.

• Simulates assembly and execution of assembly program; incorporates a very

primitive operating system that makes it possible to do text input/output.

• Installed on department’s Linux machine, so easy to use from Linux virtual

desktop. If that doesn’t work for you, can install on your own machine: Now

hosted on Sourceforge.org. Web-search on SPIM and

Sourceforge.org for link or follow the one under “Links” on course

Web site (soon).

• Commands spim and xspim (graphical). Sample programs under

“Sample programs”. More about these, and demo, soon.

4

CSCI 2321 February 22, 2021

Slide 9

A Bit About Assembly Language Syntax

• Syntax for high-level languages can be complex. Allows for good expressivity,

but translation into processor instructions is complicated.

• Syntax for assembly language, in contrast, is very simple. Less expressivity

but much easier to translate into (binary form of) instructions.

Slide 10

Arithmetic Instructions — Addition

• Instruction for integer addition (in assembly-language form):

add r1, r2, r3

Adds r2 and r3 giving r1.

(Notice the format — symbolic name, operands.)

• Is this expressive enough?

• Should we have more instructions (with different numbers of operands, e.g.)?

Basic principle: “Simplicity favors regularity.”

Easier to build simple hardware if ISA is “regular” — e.g., all arithmetic

instructions have exactly three operands.

• sub (subtraction) similar. Multiplication and division are more complicated,

so punt for now.

• What are the operands? Registers. What are those? Well . . .

5

CSCI 2321 February 22, 2021

Slide 11

Registers

• Access to main memory slow compared to processor speed, so useful to

have a within-the-chip work space — “registers”.

• MIPS architecture defines 32 “general-purpose” registers, each 32 bits.

Essentially interchangeable except for $0 (always zero) and $31 (used by

hardware to support procedure calls).

• Would more be better?

Basic principle: “Smaller is faster.”

• In machine language, reference by number.

• In assembly language, useful to adopt conventions for which registers to use

for what, define symbolic names indicating usage.

E.g., use registers 8 through 15 for “temporary” values (short-term), refer to

as $t0 through $t7.

Slide 12

High-Level Languages Versus Assembly Language

• In a high-level language you work with “variables” — conceptually, names for

memory locations. Can do arithmetic on them, copy them, etc.

• In machine/assembly language, what you can do may be more restricted —

e.g., in MIPS architecture, must load data into a register before doing

arithmetic.

• Compiler’s job is to translate from the somewhat abstract HLL view to

machine language. To do this, normally associate variables with registers —

load data from memory into registers, calculate, store it back. A “good”

compiler tries to minimize loads/stores.

6

CSCI 2321 February 22, 2021

Slide 13

Example

• Textbook gives detailed example of arithmetic on registers on p.73

(section 2.3).

• (Where do values come from? Next topic . . .)

Slide 14

Memory, Revisited

• Usually think of memory as big 1D array of 8-bit “bytes”, each with address

(index into array) and contents (value of array element).

• Often operate on elements in larger units. For MIPS, natural unit is 32-bit

“word”. (Other architectures also often operate on words. 32 bits was

common until recently; 64 bits more so now.)

• MIPS is a “load/store” architecture — access to memory limited to copying

data between memory and registers. Alternatives include arithmetic

instructions to operate on memory directly.

7

CSCI 2321 February 22, 2021

Slide 15

Memory-Access Instructions — Load

• Goal is to get one 32-bit word from memory and put in a register.

• How to specify location in memory? Seems most useful to have address in a

register. For a little more flexibility, specify address in terms of “base” and

“displacement”.

lw r, d(b)

Address specified by contents of register b plus (constant) d. Loads word

into register r.

• sw (“store word”) instruction similar.

Slide 16

Example

• Textbook gives detailed example of loading with fixed displacement on p.75

(section 2.3).

• Fine for accessing elements of struct. What about array elements?

Compute address by computing displacement and adding to base address.

Example on next slide.

8

CSCI 2321 February 22, 2021

Slide 17

Array Element Access — Example

• Suppose register $s1 contains the address of an array A of 32-bit integers,

and register $s2 contains the value of a variable i. We could use the

following to load the value of A[i] into register $t0 (keeping in mind that

addresses are in bytes, and each array element occupies 4 bytes):

add $t0, $s2, $s2 # $t0 <- 2*i

add $t0, $t0, $t0 # $t0 <- 4*i

add $t1, $t0, $s1 # $t1 <- &A[i]

lw $t0, 0($t1)

Slide 18

Array Element Access, Continued

• Isn’t there a multiply instruction we could use instead of double addition??

yes, but it’s likely to be quite slow. Bit-shifting is better — to be discussed

soon.

• And Yes, for a programmer it would be great if it were possible to load from an

address given via a base address in one register and an index in another, but

it’s not Not sure why; maybe too much for single instruction.

9

CSCI 2321 February 22, 2021

Slide 19

Addition Using Constant

• “Add immediate”

addi r1, r2, c

adds constant c (16-bit signed integer, can be negative) to contents of r2,

puts result in r1.

• Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

Slide 20

Representing (Integer) Data in Binary

• Remember that to the hardware “it’s all ones and zero” — any data you’re

working with.

• As an example — representation of signed integers using two’s complement

notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you

don’t remember.

• Note that how bytes are stored in memory (least-significant first or last) not

same in all ISAs: “Big-endian” (MIPS) versus “little-endian”. Names come

from Gulliver’s Travels.

10

CSCI 2321 February 22, 2021

Slide 21

MIPS Assembly Language Program Structure

• (Time permitting.)

• Look at starter.s under “sample programs” on course Web site.

• Overall structure mixes instructions and “directives” (things that start with .).

Programs typically have two sections, one for code (starting with .text

directive) and one for data (starting with .data).

• For now, ignore “opening linkage” and “closing linkage”. Most of the rest

should seem at least sort of plausible? (More soon.)

Slide 22

Minute Essay

• Anything today that was particularly unclear?

11

