CSCIT 2321 February 22, 2021

Administrivia

e Reading quiz 2 posted; due 03/03. More reading quizzes soon — more than
one for Chapter 2 since it’s long.

Slide 1

4 E-Mail and Me )

o Some of you are curious about why for e-mail to me | ask you to use my TMail
address, but e-mail from me comes from a @cs address, and you ask which

to use, or worry that you get it wrong, or send things to both addresses?
Partly for historical reasons | prefer to deal with mail using the @cs address.
Slide 2 But my TMail address forwards there, so whichever one you use should reach
me.

Sorry about the confusion.
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What's Next — Overview

e Defining a representative architecture (MIPS): what “architecture” means in
context, assembly language programming, machine language. (This is the
“first half” of the course.)

e Designing a simplified implementation of this architecture. (This is the
Slide 3 “second half”.)

“Architecture” as Interface Definition

e “Architecture” here means “instruction set architecture” (ISA), a key
abstraction.

e From software perspective, “architecture” defines lowest-level building blocks:
what operations are possible, what kinds of operands, binary data formats,
Slide 4 etc.

o From hardware perspective, “architecture” is a specification: Designers must
build something that behaves the way the specification says.
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Architecture — Key Abstractions

o Memory: Long long list of binary “numbers”, encoding all data (including
programs!), each with “address” and “contents”.

When running a program, program itself is in memory; so is its data.
(Very powerful concept! Major innovation during early days of digital
computers.)

e Instructions: Primitive operations processor can perform.

e Fetch/execute cycle: What the processor does to execute a program;
repeatedly get next instruction (from memory, location defined by “program

counter”), increment program counter, execute instruction.

e Registers: Fast-access work space for processor, typically divided into
“special-purpose” (e.g., program counter), “general-purpose” (integer and

floating-point). Unlike memory, these are part of the processor.

Slide 6

Design Goals for Instruction Set

e From software perspective — expressivity.
o From hardware perspective — good performance, low cost.

o (Yes, these can sometimes be opposing forces!)
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Why Study MIPS Architecture?

e Goal is not to become good assembly-language programmers, but to
understand how things work at this level. Once you understand basic

principles, learning another assembly language is easier.

o MIPS architecture is simple but representative. Not currently used much in
Slide 7 desktop/laptop world but (supposedly) similar architectures popular in
embedded-systems world.

SPIM Simulator

e |t's of course useful as you learn assembly language to be able to try
programs. Various simulators that let you do that. The one | like is SPIM. Old
and a bit clunky but has some features | really like, so it's the one I'll use in
this course.

e Simulates assembly and execution of assembly program; incorporates a very

Slide 8 primitive operating system that makes it possible to do text input/output.

e [nstalled on department’s Linux machine, so easy to use from Linux virtual
desktop. If that doesn’t work for you, can install on your own machine: Now
hosted on Sourceforge.org. Web-search on SPIM and
Sourceforge.org for link or follow the one under “Links” on course
Web site (soon).

e Commands spim and xspim (graphical). Sample programs under
“Sample programs”. More about these, and demo, soon.
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A Bit About Assembly Language Syntax

e Syntax for high-level languages can be complex. Allows for good expressivity,
but translation into processor instructions is complicated.

e Syntax for assembly language, in contrast, is very simple. Less expressivity
but much easier to translate into (binary form of) instructions.

Slide 9

Arithmetic Instructions — Addition

e Instruction for integer addition (in assembly-language form):
add rl, r2, r3
Adds r2 and r3 giving r1.
(Notice the format — symbolic name, operands.)
Slide 10 ® |s this expressive enough?
e Should we have more instructions (with different numbers of operands, e.g.)?
Basic principle: “Simplicity favors regularity.”
Easier to build simple hardware if ISA is “regular’ — e.g., all arithmetic
instructions have exactly three operands.

e sub (subtraction) similar. Multiplication and division are more complicated,
so punt for now.

o What are the operands? Registers. What are those? Well ...
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Registers

e Access to main memory slow compared to processor speed, so useful to
have a within-the-chip work space — “registers”.

o MIPS architecture defines 32 “general-purpose” registers, each 32 bits.
Essentially interchangeable except for $0 (always zero) and $31 (used by

hardware to support procedure calls).
Slide 11 pportp )

o Would more be better?
Basic principle: “Smaller is faster.”

e In machine language, reference by number.

e In assembly language, useful to adopt conventions for which registers to use
for what, define symbolic names indicating usage.

E.g., use registers 8 through 15 for “temporary” values (short-term), refer to
as $t 0 through St 7.

\. J

High-Level Languages Versus Assembly Language

e In a high-level language you work with “variables” — conceptually, names for
memory locations. Can do arithmetic on them, copy them, etc.

e In machine/assembly language, what you can do may be more restricted —
e.g., in MIPS architecture, must load data into a register before doing

Slide 12 arithmetic.

o Compiler’s job is to translate from the somewhat abstract HLL view to
machine language. To do this, normally associate variables with registers —
load data from memory into registers, calculate, store it back. A “good”
compiler tries to minimize loads/stores.
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Example

e Textbook gives detailed example of arithmetic on registers on p.73
(section 2.3).

e (Where do values come from? Next topic ...)

Slide 13
Memory, Revisited
e Usually think of memory as big 1D array of 8-bit “bytes”, each with address
(index into array) and contents (value of array element).
e Often operate on elements in larger units. For MIPS, natural unit is 32-bit
“word”. (Other architectures also often operate on words. 32 bits was
Slide 14 common until recently; 64 bits more so now.)

e MIPS is a “load/store” architecture — access to memory limited to copying
data between memory and registers. Alternatives include arithmetic
instructions to operate on memory directly.
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Memory-Access Instructions — Load

e Goal is to get one 32-bit word from memory and put in a register.

o How to specify location in memory? Seems most useful to have address in a
register. For a little more flexibility, specify address in terms of “base” and
“displacement”.

Slide 15 1w r, d(b)

Address specified by contents of register b plus (constant) d. Loads word
into register r.

e sw (“store word”) instruction similar.

Example

e Textbook gives detailed example of loading with fixed displacement on p.75
(section 2.3).

e Fine for accessing elements of st ruct. What about array elements?
Compute address by computing displacement and adding to base address.
Slide 16 Example on next slide.
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Array Element Access — Example

e Suppose register $s1 contains the address of an array A of 32-bit integers,
and register $s2 contains the value of a variable i. We could use the
following to load the value of A [ 1] into register $t 0 (keeping in mind that
addresses are in bytes, and each array element occupies 4 bytes):

. add $t0, $s2, $s2 # $t0 <— 2+i
Slide 17
add $t0, $t0, $tO # $t0 <— 4xi
add $tl, $t0, $sl # S$tl <- &A[1]
1w $t0, 0($tl)
Array Element Access, Continued
e [sn’t there a multiply instruction we could use instead of double addition??
yes, but it’s likely to be quite slow. Bit-shifting is better — to be discussed
soon.
e And Yes, for a programmer it would be great if it were possible to load from an
Slide 18 address given via a base address in one register and an index in another, but

it's not Not sure why; maybe too much for single instruction.
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Addition Using Constant

e “Add immediate”
addi rl, r2, c
adds constant c (16-bit signed integer, can be negative) to contents of r2,
puts resultin r1.

Slide 19 o Exists because often we need to use a small constant in a program.

Basic principle: “Make the common case fast.”

Representing (Integer) Data in Binary

o Remember that to the hardware “it’s all ones and zero” — any data you're

working with.

e As an example — representation of signed integers using two’s complement
notation. Should have been covered in CSCI 1320, but read/skim 2.4 if you
Slide 20 don’t remember.

o Note that how bytes are stored in memory (least-significant first or last) not
same in all ISAs: “Big-endian” (MIPS) versus “little-endian”. Names come

from Gulliver’s Travels.

10



CSCIT 2321 February 22, 2021

MIPS Assembly Language Program Structure

e (Time permitting.)

Look at starter. s under “sample programs” on course Web site.

Overall structure mixes instructions and “directives” (things that start with .).
Programs typically have two sections, one for code (starting with . text
Slide 21 directive) and one for data (starting with . data).

For now, ignore “opening linkage” and “closing linkage”. Most of the rest
should seem at least sort of plausible? (More soon.)

e Anything today that was particularly unclear?

Slide 22
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