
CSCI 2321 March 1, 2021

Slide 1

Administrivia

• XSPIM demo in last lecture went wrong because I wasn’t sharing all windows.

Oops! Try again today.

Slide 2

Representing Instructions in Binary

• “It’s all ones and zeros” applies not only to data but also to programs —

“stored program” idea. (Some very early computers didn’t work that way —

programming was by rewiring(!).)

• So we need a way to represent instructions in binary . . .

1

CSCI 2321 March 1, 2021

Slide 3

Sidebar: Hexadecimal

• Binary is well and good but long strings of it difficult for humans.

• More compact representation is hexadecimal (base 16). Why that one? Any

base that’s a power of 2 is trivially easy to convert from and to binary: Each

digit in base 2n represents n bits. (Not hard to convince yourself that this

works — to binary, just write down definition for other-base number and

expand, while from binary, can write each group of n bits and observe that

each can be written as 2m times an n-bit number in the range 0 through

2n − 1.

• Base 16 attractive because 4 divides typical word sizes. Base 8 (octal) once

popular, and easier for most humans, and made sense when 36-bit words

were more common, but not so much now.

• I’ll use C convention of prefixing hexadecimal values with 0x.

• (Short example.)

Slide 4

Representing Instructions in Binary, Continued

• First consider what we have to represent:

– For all instructions, which instruction it is.

– For add and sub, three operands (all register numbers).

– For lw and sw, three operands (two register numbers and a

“displacement”).

– And so forth . . .

• So, each instruction will have “fields” — consistent format for storing pieces of

data, a little like a C struct.

2

CSCI 2321 March 1, 2021

Slide 5

Representing Instructions in Binary, Continued

• So, can we use the same format for all instructions? Some data (“which

instruction”) is common to all, but operands may need to be different.

• Can we / should we make all instructions the same length? For MIPS, yes

(other architectures differ), and then define different ways of dividing up the

length — “formats”.

(Another way to say it, maybe; In MIPS all machine-language instructions are

32 bits. Of those, 6 are always something identifying which instruction; the

remaining bits are split up differently for different kinds of instructions.)

Slide 6

MIPS Assembly Language Program Structure

• Look at starter.s under “sample programs” on course Web site.

• Overall structure mixes instructions and “directives” (things that start with .).

Programs typically have two sections, one for code (starting with .text

directive) and one for data (starting with .data).

• For now, ignore “opening linkage” and “closing linkage” (which will make

sense after we talk about procedure calls soon).

3

CSCI 2321 March 1, 2021

Slide 7

SPIM Revisited

• xspim starts graphical version; most-often used buttons are probably “load”

and “step”.

• spim starts command-line version; commands include load, p to print, s

to step. Also can run program directly (not in debug mode); useful for testing

programs you think are complete and working.

• Note that there’s no machine code for la. Why? . . .

Slide 8

Sidebar: Pseudoinstructions

• Assemblers can also allow so-called pseudoinstructions: No matching

machine instruction, but easily expanded at assembly time into one or a few

“real” instructions.

• I say avoid when you can, but some (such as la) are just too useful.

• (Why do I say avoid? because our goal here is not to be ace

assembly-language programmers able to write compact programs, but to

understand the instructions that the hardware must provide directly.)

4

CSCI 2321 March 1, 2021

Slide 9

I Format

• Meant for instructions such as lw, sw.

• Fields:

– op — opcode, 6 bits

– rs — source operand, 5 bits

– rt — destination operand, 5 bits

– disp — displacement, 16 bits

Slide 10

I Format — Example

• Find binary representation of

lw $t0, 12($t1)

• Fields:

– op — look up lw in MIPS reference (green card in textbook or online)

– rs — look up $t1

– rt — 8

– disp — convert 12 to 16-bit value

• Convert all of the above to binary and concatenate. Use simulator to check.

5

CSCI 2321 March 1, 2021

Slide 11

Sidebar: Sign Extension

• In computing the actual address for lw, the hardware must add a 32-bit value

and a 16-bit value. Does that mean we will need to build something that adds

two 32-bit values and also a 32-bit value and a 16-bit value?

• Not if we have a way to extend the 16-bit value to a 32-bit value — “sign

extension”.

• Simple enough for non-negative values (pad on the left with 0s). For negative

values, works to pad to the left with 1s). (Textbook explains in section 2.4 why

that works.)

Slide 12

R Format

• Meant for instructions such as add, sub.

• Fields:

– op — opcode, 6 bits

– rs — first source operand, 5 bits

– rt — second source operand, 5 bits

– rd — destination operand, 5 bits

– shamt — “shift amount” (not used for all instructions)

– funct — “function field”, 6 bits (not used for all instructions)

• Somewhat unusual in that opcode doesn’t completely determine which

instruction it is; instead, what’s unique is the combination of opcode and

function field.

6

CSCI 2321 March 1, 2021

Slide 13

R Format — Example

• Find binary representation of

add $t0, $s1, $s2

• Fields:

– op — 0

– rs — look up in reference

– rt — look up

– rd — look up

– shamt — 0 (not used)

– funct — look up

• Convert all of the above to binary and concatenate. Use the simulator to

check.

Slide 14

Interpreting Machine-Language Instructions

• So that’s how to get machine language from assembly language. How to go

the other way?

• At first might seem tricky — which format is being used? but all have 6-bit

opcode first, and it determines format for the rest.

• (Example.)

7

CSCI 2321 March 1, 2021

Slide 15

Minute Essay

• Does one of the two instruction formats (I and R) seem like it would work for

addi? If so, which one, and can you say anything about what the values of

the various fields might be? If not, what fields would you need in a new

format?

• Anything particularly unclear?

Slide 16

Minute Essay Answer

• I format works — the operands of addi are two register numbers and a

16-bit constant value, same as lw and sw. Like those two instructions, it has

“source” and “destination” registers, which can go in those two fields, and a

16-bit immediate value that can go in the field used for displacement in the

load/store instructions.

8

