
CSCI 2321 March 3, 2021

Slide 1

Administrivia

• (None?)

Slide 2

“Shift” Instructions

• C << and >> (on unsigned numbers) are translated into sll (“shift left

logical”) and srl (“shift right logical”).

• sll and srl do what the names imply(?): Bits “fall off” one side, and we

add zeros at the other side.

• When shifting left, filling with zeros makes sense. But when shifting right,

might want to extend the sign bit instead. sra (“shift right arithmetic”) does

that.

• All R-format instructions, and they use that “shift amount” field (others don’t).

• These instructions very useful for multiplying and dividing by small powers of

2, important since multiplication and division likely to be slow (more later in

the course).

1

CSCI 2321 March 3, 2021

Slide 3

Logical Operations

• Sometimes useful to be able to work with individual bits — e.g., to implement

a compact array of boolean values.

• Thus, MIPS instruction set provides “logical operations”. Hard to say whether

these exist to support C bit-manipulation operations, or C bit-manipulation

operations exist because most ISAs provide such instructions!

Slide 4

Bitwise And and Or

• C & is translated into and or andi. C | is translated into or or ori.

Format/operands are analogous to add and addi. (Note however that while

the immediate value in add is sign-extended, the one for andi is not.)

(Note/recall that C has two sets of and/or operators — logical and bitwise.

These are the bitwise ones.)

• (Example on next slide.)

• We could use these to set, clear, or test particular bits (or to set, and to

clear, and with a 1 in the position to test and then a check of result).

• All R-format or I-format instructions.

2

CSCI 2321 March 3, 2021

Slide 5

Example of Bitwise And, Or

• Given the following values for $s1, $s2

0000 0001 0100 1010 0110 1001 0111 1010 1000

1010 0011 0101 0000 1001 1001 1111 0000 0101

result of applying and is

0000 0001 0100 0000 0000 1001 0111 0000 0000

and result of applying or is

0000 0001 0100 1010 0110 1001 0111 1010 1000

1010 0011 0101 1010 1111 1001 1111 1010 1101

Slide 6

Other Logical Operations

• “Exclusive or” implements . . . what the name suggests (see textbook).

• “Nor” likewise. Can be used to implement “not” (see textbook).

3

CSCI 2321 March 3, 2021

Slide 7

Flow of Control

• So far we know how to do (some) arithmetic, move data into and out of

memory. What about if/then/else, loops? (See sidebar on p. 96 for early

commentary on conditional execution.)

• Need instructions that allow us to “make a decision”. Perhaps surprisingly,

only two: beq (“branch if equal”), bne (“branch if not equal”).

• Format:

beq reg1, reg2, label

where label is a “label” (text followed by : in source, either on the same

line as the instruction to branch to or on a line by itself just before)

and similarly for bne.

• Illustrate with an example . . .

Slide 8

Sidebar: goto

• Some very early HLLs implemented conditional execution using goto, also

spelled go to.

What it does: Immediately transfer control to some other point in the program,

identified by a label (e.g., here:).

• Conditional execution and loops can all be expressed using goto. Makes

some sense, since this is pretty much all the hardware can do.

• Very quickly became apparent that this made for code that was hard to

reason about. So later languages have been “block structured”.

4

CSCI 2321 March 3, 2021

Slide 9

Sidebar: goto in C, Continued

• goto still exists in C because every once in a while it makes for

more-readable code (e.g., some error handling).

• Useful in this course as an intermediate step between block-structured

(“normal”?) C and assembly language, which has no notion of block

structuring.

• (Sometimes written goto. Same thing.)

Slide 10

Flow of Control Example

• Suppose we have this in C (and as usual all variables are 32-bit integers)

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

• What instructions should compiler produce? Assume we’re using $s0

through $s4 for f, g, h, i, j.

• (For now, punt on how to represent L1.)

5

CSCI 2321 March 3, 2021

Slide 11

Flow of Control Example, Continued

• Compiling

if (i == j) goto L1:

f = g + h;

L1: f = f - i;

using $s0 through $s4 for f, g, h, i, j.

gives

beq $s3, $s4, L1

add $s0, $s1, $s2

L1: sub $s0, $s0, $s3

Slide 12

Another Flow of Control Example

• Of course, we don’t usually have goto in C. More likely is this:

if (i == j)

f = g + h

else

f = g - h

• What to do with this? Rewrite using goto . . .

6

CSCI 2321 March 3, 2021

Slide 13

Another Flow of Control Example

• Rewriting

if (i == j)

f = g + h

else

f = g - h

gives

if (i != j) goto Else:

f = g + h

goto End:

Else: f = g - h

End:

and then we can continue as before. (How to do unconditional “goto”? j

(“jump”).)

Slide 14

Loops

• Do we have enough to do (some kinds of) loops? Yes — example:

Loop: g = g + A[i];

i = i + j;

if (i != h) goto Loop:

assuming we’re using $s1 through $s4 for g, h, i, j, and $s5 for the

address of A.

(This time we’ll use sll rather than two adds to multiply i by 4.)

7

CSCI 2321 March 3, 2021

Slide 15

Loops — Example Continued

• Result

Loop: sll $t1, $s3, 2 # $t1 <- 4*i

add $t1, $t1, $s5 # $t1 <- & of A[i]

lw $t0, 0($t1) # $t0 <- A[i]

add $s1, $s1, $t0 # g = h + A[i]

add $s3, $s3, $s4 # i = i + j

bne $s3, $s2, Loop # if (i!=h) goto Loop

Slide 16

Conditional Execution, Continued

• If hand-compiling from C, useful to first translate into code with only goto for

out-of-sequence execution, and from there to MIPS.

• Example:

while (A[i] == k) {

i = i + j;

}

8

CSCI 2321 March 3, 2021

Slide 17

Example Continued

• MIPS equivalent, with C-with-goto as comments (and assuming $s0 has

the address of A and registers $s1 through $s3 have i, j, and k):

Loop:

if (A[i] != k) goto End:

sll $t0, $s1, 2 # i * 4

add $t0, $s0, $t1 # &A[i]

lw $t0, 0($t1) # A[i]

bne $t0, $s3, End

i = i + j

add $s1, $s1, $s2

goto Loop:

j Loop

End:

Slide 18

More Flow of Control

• With what we have now we can do if/then/else and loops, but only if condition

being tested is equals / not equals.

• So, we need instructions such as blt, ble, right?

• But those are apparently difficult to implement well; instead MIPS has “set on

less than”:

slt r1, r2, r3

which compares the contents of registers r2 and r3 and sets r1 — 1 if r2

is smaller, else 0.

• Example — compile the following C:

if (a < b) goto Less:

assuming we’re using $s0, $s1 for a, b.

9

CSCI 2321 March 3, 2021

Slide 19

Example Continued

• Equivalent MIPS:

slt $t0, $s0, $s1

bne $t0, $zero, Less

Slide 20

More Flow of Control, Continued

• Do we have enough now? for all six possible C comparisons of integers?

Yes . . .

• One more C flow-of-control construct we could talk about — switch — but

defer for now.

• Machine language for all of these instructions? Later.

10

CSCI 2321 March 3, 2021

Slide 21

Minute Essay

• Is the “shift amount” field big enough to represent all possible shifts? Is it

bigger than it needs to be?

Slide 22

Minute Essay Answer

• It’s just the right size — with 5 bits we can represent values of 0 through 31,

and the range of possible meaningful shifts ranges from 0 through 31 as well.

(Think for a minute about what happens when you shift a 32-bit value 32 bits

left or right; is it useful?)

11

